OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6929–6944

Photothermal and photoacoustic Raman cytometry in vitro and in vivo

Evgeny V. Shashkov, Ekaterina I. Galanzha, and Vladimir P. Zharov  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 6929-6944 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (624 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An integrated Raman-based cytometry was developed with photothermal (PT) and photoacoustic (PA) detection of Raman-induced thermal and acoustic signals in biological samples with Raman-active vibrational modes. The two-frequency, spatially and temporally overlapping pump–Stokes excitation in counterpropagating geometry was provided by a nanosecond tunable (420–2300 nm) optical parametric oscillator and a Raman shifter (639 nm) pumped by a double-pulsed Q-switched Nd:YAG laser using microscopic and fiberoptic delivery of laser radiation. The PA and PT Raman detection and imaging technique was tested in vitro with benzene, acetone, olive oil, carbon nanotubes, chylomicron phantom, and cancer cells, and in vivo in single adipocytes in mouse mesentery model. The integration of linear and nonlinear PA and PT Raman scanning and flow cytometry has the potential to enhance its chemical specificity and sensitivity including nanobubble-based amplification (up to 10- fold) for detection of absorbing and nonabsorbing targets that are important for both basic and clinically relevant studies of lymph and blood biochemistry, cancer, and fat distribution at the single-cell level.

© 2010 OSA

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(350.4990) Other areas of optics : Particles
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 6, 2010
Revised Manuscript: February 23, 2010
Manuscript Accepted: March 10, 2010
Published: March 19, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Evgeny V. Shashkov, Ekaterina I. Galanzha, and Vladimir P. Zharov, "Photothermal and photoacoustic Raman cytometry in vitro and in vivo," Opt. Express 18, 6929-6944 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. P. Zharov, and V. S. Letokhov, Laser Optoacoustic Spectroscopy (Springer-Verlag; Berlin Heidelberg 1986).
  2. V. P. Zharov, Laser optoacoustic spectroscopy in chromatography: in Laser Analytical Spectrochemistry, V. S. Letokhov, ed. (Boston, 1986), pp. 229–271.
  3. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006). [CrossRef]
  4. L. V. Wang, ed., Photoacoustic imaging and spectroscopy (CRC Press, 2009).
  5. J. W. Kim, E. I. Galanzha, E. V. Shashkov, H. M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol. 4(10), 688–694 (2009). [CrossRef] [PubMed]
  6. E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009). [CrossRef] [PubMed]
  7. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007). [CrossRef] [PubMed]
  8. E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009). [CrossRef] [PubMed]
  9. S. Nechaeiv and N. Ponomarev, “High-resolution Raman spectrometer,” Sov. J. Quantum Electron. 5, 72–76 (1975).
  10. J. J. Barrett and M. J. Berry, “Photoacoustic Raman spectroscopy (PARS) using cw laser sources,” Appl. Phys. Lett. 34(2), 144–147 (1979). [CrossRef]
  11. C. K. N. Patel and A. C. Tam, “Optoacoustic Raman gain spectroscopy of liquids,” Appl. Phys. Lett. 34(11), 760–763 (1979). [CrossRef]
  12. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986). [CrossRef]
  13. G. A. West, D. R. Siebert, and J. J. Barrett, “Gas phase photoacoustic Raman spectroscopy using pulsed laser excitation,” Appl. Phys. (Berl.) 51, 2823–2828 (1980). [CrossRef]
  14. J. J. Barrett and D. F. Heller, “Theoretical analysis of photoacoustic Raman spectroscopy,” J. Opt. Soc. Am. 71(11), 1299–1308 (1981). [CrossRef]
  15. C. K. N. Patel and A. C. Tam, “Pulsed optoacoutstic spectroscopy of condensed matter,” Rev. Mod. Phys. 53(3), 517–550 (1981). [CrossRef]
  16. A. M. Brodnikovskii, V.P. Zharov, and N.P. Koroteev, “Photoacoustic Raman spectroscopy of molecular gases,” Sov. J. Quantum Electron. •••, 2421–2430 (1985).
  17. Y. Oki, N. Kawada, T. Ogawa, Y. Abe, and M. Maeda, “Y. Abe and M. Maeda, “Sensitive H 2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36(Part 2, No. 9A/B), L1172–L1174 (1997). [CrossRef]
  18. K. Das, Y. Rostovtsev, K. Lehmann, and M. Scully, “Thermodynamic and noise considerations for the detection of microscopic particles in a gas by photoacoustic Raman spectroscopy,” Opt. Commun. 246(4-6), 551–559 (2005). [CrossRef]
  19. Y. Oki, S. Nakazono, Y. Nonaka, and M. Maeda, “Sensitive H2 detection by use of thermal-lens Raman spectroscopy without a tunable laser,” Opt. Lett. 25(14), 1040–1042 (2000). [CrossRef]
  20. Y. Oki, N. Kawada, Y. Abe, and M. Maeda, “Nonlinear Raman spectroscopy without tunable laser for sensitive gas detection in the atmosphere,” Opt. Commun. 161(1-3), 57–62 (1999). [CrossRef]
  21. R. C. Sharma, “A novel demonstration of photoacoustic Raman spectroscopy with combined stimulated Raman pumping in H2 molecule,” Opt. Commun. 282(6), 1183–1185 (2009). [CrossRef]
  22. A. M. Sakashita, S. P. Bydlowski, D. A. F. Chamone, and R. C. Maranhão, “Plasma kinetics of an artificial emulsion resembling chylomicrons in patients with chronic lymphocytic leukemia,” Ann. Hematol. 79(12), 687–690 (2000). [CrossRef]
  23. Y. Park, W. J. Grellner, W. S. Harris, and J. M. Miles, “A new method for the study of chylomicron kinetics in vivo,” Am. J. Physiol. Endocrinol. Metab. 279(6), E1258–E1263 (2000). [PubMed]
  24. J.-W. Kim, E. V. Shashkov, E. I. Galanzha, N. Kotagiri, and V. P. Zharov, “Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters,” Lasers Surg. Med. 39(7), 622–634 (2007). [CrossRef] [PubMed]
  25. E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening,” World J. Gastroenterol. 13(2), 192–218 (2007). [PubMed]
  26. V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005). [CrossRef]
  27. R. M. El-Abassy, P. Donfak, and A. Materny, “Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration,” J. Raman Spectrosc. •••, 2279 (2009).
  28. C. Heinrich, A. Hofer, A. Ritsch, C. Ciardi, S. Bernet, and M. Ritsch-Marte, “Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy,” Opt. Express 16(4), 2699–2708 (2008). [CrossRef] [PubMed]
  29. A. S. Biris, E. I. Galanzha, Z. Li, M. Mahmood, Y. Xu, and V. P. Zharov, “In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues,” J. Biomed. Opt. 14(2), 021006 (2009). [CrossRef] [PubMed]
  30. J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, “References database of Raman spectra of biological molecules,” J. Raman Spectrosc. 38(9), 1133–1147 (2007). [CrossRef]
  31. V. Capozzi, G. Perna, A. Gallone, P. F. Biagi, P. Carmone, A. Fratello, G. Guida, P. Zanna, and R. Cicero, “Raman and optical spectroscopy of eumelanin films,” J. Mol. Struct. 744-747, 717–721 (2005). [CrossRef]
  32. T. T. Le, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis,” BMC Cancer 9(1), 42 (2009). [CrossRef] [PubMed]
  33. V. P. Zharov, V. Galitovskiy, C. S. Lyle, and T. C. Chambers, “Superhigh-sensitivity photothermal monitoring of individual cell response to antitumor drug,” J. Biomed. Opt. 11(6), 064034 (2006). [CrossRef]
  34. C. Heinrich, C. Meusburger, S. Bernet, and M. Ritsch-Marte, “CARS miscoscopy in a wide-field geometry with nanosecond pulses,” J. Raman Spectrosc. 37(6), 675–679 (2006). [CrossRef]
  35. X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited