OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6945–6956

Autocorrelation and phase retrieval in the UV using two-photon absorption in diamond pin photodiodes

Nils Fabian Kleimeier, Thorben Haarlammert, Henrik Witte, Udo Schühle, Jean-Francois Hochedez, Ali BenMoussa, and Helmut Zacharias  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 6945-6956 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1059 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the utilization of the two-photon induced free carrier generation in a diamond pin-type photodiode to record fringe-resolved second-order autocorrelations of femtosecond pulses in the UV. Measurements in photovoltaic mode are performed at the second and third harmonic of a Ti:sapphire laser ( λ 0 = 401 n m and λ 0 = 265 nm) with pulse energies down to about 2 nJ. The band gap of diamond of 5.5 eV sets a short wavelength limit at about 225 nm. Combined with the simultaneously recorded linear autocorrelation the spectral phase is reconstructed employing an iterative algorithm.

© 2010 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: January 12, 2010
Revised Manuscript: March 9, 2010
Manuscript Accepted: March 9, 2010
Published: March 19, 2010

Nils Fabian Kleimeier, Thorben Haarlammert, Henrik Witte, Udo Schühle, Jean-Francois Hochedez, Ali BenMoussa, and Helmut Zacharias, "Autocorrelation and phase retrieval in the UV using two-photon absorption in diamond pin photodiodes," Opt. Express 18, 6945-6956 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101-1111 (1993). [CrossRef]
  2. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792-794 (1998). [CrossRef]
  3. K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25(6), 1225-1233 (1989). [CrossRef]
  4. J. Peatross and A. Rundquist, “Temporal decorrelation of short laser pulses,” J. Opt. Soc. Am. B 15(1), 216–222 (1998). [CrossRef]
  5. J. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Omenetto, and A. J. Taylor, “Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements,” Opt. Lett. 24(23), 1774-1776 (1999). [CrossRef]
  6. K. Kato, “Second-harmonic generation to 2048Å in,” IEEE J. Quantum Electron. 22(7), 1013-1014 (1986). [CrossRef]
  7. C. Chen, “Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal,” Opt. Mater. 26(4), 425-429 (2004). [CrossRef]
  8. S. P. Le Blanc, G. Szabo, and A. R. Sauerbrey, “Femtosecond single-shot phase-sensitive autocorrelator for the ultraviolet,” Opt. Lett. 16(19), 1508-1510 (1991). [CrossRef] [PubMed]
  9. Y. M. Li and R. Fedosejevs, “Visible single-shot autocorrelator in BaF2 for subpicosecond KrF laser pulses,” Appl. Opt. 35(15), 2583-2586 (1996). [CrossRef] [PubMed]
  10. F. G. Omenetto, W. A. Schroeder, K. Boyer, J. W. Longworth, A. McPherson, and C. K. Rhodes, “Measurement of 160-fs, 248-nm pulses by two-photon fluorescence in fused-silica crystals,” Appl. Opt. 36(15), 3421-3424 (1997). [CrossRef] [PubMed]
  11. J. I. Dadap, G. B. Focht, D. H. Reitze, and M. C. Downer, “Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement,” Opt. Lett. 16(7), 499-501 (1991). [CrossRef] [PubMed]
  12. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277-3295 (1997). [CrossRef]
  13. D. J. Kane, A. J. Taylor, R. Trebino, and K. W. Delong, “Single-shot measurement of the intensity and phase of a femtosecond UV laser pulse with frequency-resolved optical gating,” Opt. Lett. 19(14), 1061-1063 (1994). [CrossRef] [PubMed]
  14. K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating in the UV using the electronic Kerr effect,” Appl. Phys. B 63, 485-489 (1996).
  15. W. Plaß, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV- and IR pulses,” Appl. Phys. B 54, 199-201 (1992). [CrossRef]
  16. M. Anderson, T. Witting, and I. A. Walmsley, “Gold-SPIDER: spectral phase interferometry for direct electric field reconstruction utilizing sum-frequency generation from a gold surface,” J. Opt. Soc. Am. B 25(6), A13-A16 (2008). [CrossRef]
  17. C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008). [CrossRef]
  18. Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett. 17(9), 658-660 (1992). [CrossRef] [PubMed]
  19. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22(17), 1344-1346 (1997). [CrossRef]
  20. T. Feurer, A. Glass, and R. Sauerbrey, “Two-photon photoconductivity in SiC photodiodes and its application to autocorrelation measurements of femtosecond optical pulses,” Appl. Phys. B 65(2), 295-297 (1997). [CrossRef]
  21. A. M. Streltsov, J. K. Ranka, and A. L. Gaeta, “Femtosecond ultraviolet autocorrelation measurements based on two-photon conductivity in fused silica,” Opt. Lett. 23(10), 798-800 (1998). [CrossRef]
  22. S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet emission from a diamond pn junction,” Science 292(5523), 1899-1901 (2001). [CrossRef] [PubMed]
  23. A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006). [CrossRef]
  24. J. Hüve, T. Haarlammert, T. Steinbrück, J. Kutzner, G. Tsilimis, and H. Zacharias, “High-flux high harmonic soft X-ray generation up to 10 kHz repetition rate,” Opt. Commun. 266(1), 261-265 (2006). [CrossRef]
  25. S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338-340 (1995). [CrossRef]
  26. N. Nikogosyan, Properties of Optical and Laser-Related Material (John Wiley and Sons, 1998).
  27. C. Spielmann, L. Xu, and F. Krausz, “Measurement of interferometric autocorrelations: comment,” Appl. Opt. 36(12), 2523-2525 (1997). [CrossRef] [PubMed]
  28. K. Naganuma, K. Mogi, and H. Yamada, “Time direction determination of asymmetric ultrashort optical pulses from second-harmonic generation autocorrelation signals,” Appl. Phys. Lett. 54(13), 1201-1202 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited