OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7002–7009

Effect of pure dephasing on the Jaynes-Cummings nonlinearities

A. Gonzalez-Tudela, E. del Valle, E. Cancellieri, C. Tejedor, D. Sanvitto, and F. P. Laussy  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 7002-7009 (2010)
http://dx.doi.org/10.1364/OE.18.007002


View Full Text Article

Enhanced HTML    Acrobat PDF (415 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the effect of pure dephasing on a two-level system in strong coupling in the nonlinear regime with the single mode of a cavity. The photoluminescence spectrum of the cavity has a robust tendency to display triplet structures, instead of the expected Jaynes-Cummings pairs of doublets at the incommensurate frequencies ± ( n ± n 1 ) for integer n. We discuss recent experimental works that may already manifest signatures of single photon nonlinearities.

© 2010 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(270.5580) Quantum optics : Quantum electrodynamics
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Quantum Optics

History
Original Manuscript: February 24, 2010
Revised Manuscript: March 9, 2010
Manuscript Accepted: March 11, 2010
Published: March 19, 2010

Citation
A. Gonzalez-Tudela, E. del Valle, E. Cancellieri, C. Tejedor, D. Sanvitto, and F. P. Laussy, "Effect of pure dephasing on the Jaynes-Cummings nonlinearities," Opt. Express 18, 7002-7009 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-7002


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. del Valle, Microcavity Quantum Electrodynamics (VDM Verlag, 2009).
  2. S. Haroche and D. Kleppner, "Cavity quantum electrodynamics," Phys. Today 42, 24 (1989). [CrossRef]
  3. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature 431, 162 (2004). [CrossRef] [PubMed]
  4. S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, "Observation of strong coupling between a micromechanical resonator and an optical cavity field," Nature 460, 724 (2009). [CrossRef] [PubMed]
  5. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fǎlt, E. L. Hu, and A. Ǐmamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896 (2007). [CrossRef] [PubMed]
  6. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, "Photon antibunching from a single quantum dot-microcavity system in the strong coupling regime," Phys. Rev. Lett. 98, 117402 (2007). [CrossRef] [PubMed]
  7. M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, and Y. Arakawa, "Large vacuum Rabi splitting in single self assembled quantum dot-nanocavity system," Appl. Phys. Express 1, 072102 (2008). [CrossRef]
  8. C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, "Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems," Opt. Express 16, 15006 (2008). [CrossRef] [PubMed]
  9. A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, M.-C. Amann, and J. J. Finley, "Electrical control of spontaneous emission and strong coupling for a single quantum dot," New J. Phys. 11, 023034 (2009). [CrossRef]
  10. A. Dousse, J. Suffczyński, R. Braive, A. Miard, A. Lemaître, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, "Scalable implementation of strongly coupled cavity-quantum dot devices," Appl. Phys. Lett. 94, 121102 (2009). [CrossRef]
  11. G. Cui and M. G. Raymer, "Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime," Phys. Rev. A 73, 053807 (2006). [CrossRef]
  12. F. P. Laussy, E. del Valle, and C. Tejedor, "Strong coupling of quantum dots in microcavities," Phys. Rev. Lett. 101, 083601 (2008). [CrossRef] [PubMed]
  13. A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, "Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities," Phys. Rev. Lett. 103, 087405 (2009). [CrossRef] [PubMed]
  14. A. Naesby, T. Suhr, P. T. Kristensen, and J. Mork, "Influence of pure dephasing on emission spectra from single photon sources," Phys. Rev. A 78, 045802 (2008). [CrossRef]
  15. M. Yamaguchi, T. Asano, and S. Noda, "Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics," Opt. Express 16, 118067 (2008). [CrossRef]
  16. J. Suffczyński, A. Dousse, K. Gauthron, A. Lemaître, I. Sagnes, L. Lanco, J. Bloch, P. Voisin, and P. Senellart, "Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems," Phys. Rev. Lett. 103, 027401 (2009). [CrossRef] [PubMed]
  17. P. Borri, W. Langbein, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, "Exciton dephasing via phonon interactions in InAs quantum dots: Dependence on quantum confinement," Phys. Rev. B 71, 115328 (2005). [CrossRef]
  18. I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, P. Roussignol, R. Ferreira, and J. M. Gérard, "Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment," Phys. Rev. B 75, 073308 (2007). [CrossRef]
  19. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, "Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations," Phys. Rev. Lett. 64, 2499 (1990). [CrossRef] [PubMed]
  20. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968 (2000). [CrossRef] [PubMed]
  21. E. Jaynes and F. Cummings, "Comparison of quantum and semiclassical radiation theory with application to the beam maser," Proc. IEEE 51, 89 (1963). [CrossRef]
  22. M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, "Quantum Rabi oscillation: A direct test of field quantization in a cavity," Phys. Rev. Lett. 76, 1800 (1996). [CrossRef] [PubMed]
  23. J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, "Climbing the Jaynes-Cummings ladder and observing its √ n nonlinearity in a cavity QED system," Nature 454, 315 (2008). [CrossRef] [PubMed]
  24. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, "Coherent generation of non-classical light on a chip via photon-induced tunneling and blockade," Nat. Phys. 4, 859 (2008). [CrossRef]
  25. E. del Valle, F. P. Laussy, and C. Tejedor, "Luminescence spectra of quantum dots in microcavities. II. Fermions," Phys. Rev. B 79, 235326 (2009). [CrossRef]
  26. G. S. Agarwal and S. Dutta Gupta, "Steady states in cavity QED due to incoherent pumping," Phys. Rev. A 42, 1737 (1990). [CrossRef] [PubMed]
  27. F. P. Laussy and E. del Valle, "Optical spectra of the Jaynes-Cummings ladder," AIP Conference Proceedings 1147, 46 (2009). [CrossRef]
  28. Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, "Investigation of the spectral triplet in strongly coupled quantum dot-nanocavity system," Appl. Phys. Express 2, 122301 (2009). [CrossRef]
  29. M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, "Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot," Phys. Rev. B 80, 155326 (2009). [CrossRef]
  30. S. Hughes and P. Yao, "Theory of quantum light emission from a strongly-coupled single quantum dot photonic crystal cavity system," Opt. Express 17, 3322 (2009). [CrossRef] [PubMed]
  31. B. R. Mollow, "Power spectrum of light scattered by two-level systems," Phys. Rev. 188, 1969 (1969). [CrossRef]
  32. A. Auffèves, J.-M. Gérard, and J.-P. Poizat, "Pure emitter dephasing: A resource for advanced solid-state single photon sources," Phys. Rev. A 79, 053838 (2009). [CrossRef]
  33. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, "Laser oscillation in a strongly coupled single quantum-dot-nanocavity system," Nat. Phys. (2010). AOP doi:10.1038/nphys1518. [CrossRef]
  34. 34. S. Strauf, "Lasing under strong coupling," Nat. Phys. (2010). AOP doi:10.1038/nphys1600. [CrossRef]
  35. D. Sanvitto, F. P. Laussy, F. Bello, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Single-photon nonlinearity of a semiconductor quantum dot in a cavity," arXiv:condmat/0612034 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited