OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7031–7037

Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator

Taro Ikeda, Kazunori Takahashi, Yoshiaki Kanamori, and Kazuhiro Hane  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 7031-7037 (2010)
http://dx.doi.org/10.1364/OE.18.007031


View Full Text Article

Enhanced HTML    Acrobat PDF (339 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase shifter is an important part of optical waveguide circuits as used in interferometer. However, it is not always easy to generate a large phase shift in a small region. Here, a variable phase-shifter operating as delay-line of silicon waveguide was designed and fabricated by silicon micromachining. The proposed phase-shifter consists of a freestanding submicron-wide silicon waveguide with two waveguide couplers and an ultrasmall silicon comb-drive actuator. The position of the freestanding waveguide is moved by the actuator to vary the total optical path. Phase-shift was measured in a Mach-Zehnder interferometer to be 3.0π at the displacement of 1.0 μm at the voltage of 31V. The dimension of the fabricated device is 50μm wide and 85μm long.

© 2010 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(250.5300) Optoelectronics : Photonic integrated circuits
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optical Devices

History
Original Manuscript: January 6, 2010
Revised Manuscript: February 26, 2010
Manuscript Accepted: March 10, 2010
Published: March 22, 2010

Citation
Taro Ikeda, Kazunori Takahashi, Yoshiaki Kanamori, and Kazuhiro Hane, "Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator," Opt. Express 18, 7031-7037 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-7031


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006). [CrossRef]
  2. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006). [CrossRef]
  3. A. Sasaki, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L383–L385 (2001). [CrossRef]
  4. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006). [CrossRef]
  5. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005). [CrossRef]
  6. A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003). [CrossRef]
  7. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16(19), 14421–14428 (2008). [CrossRef] [PubMed]
  8. E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008). [CrossRef]
  9. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  10. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006). [CrossRef]
  11. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  12. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007). [CrossRef] [PubMed]
  13. C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express 15(8), 5069–5076 (2007). [CrossRef] [PubMed]
  14. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 (2009). [CrossRef] [PubMed]
  15. K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. M. Ionescu, “Compact gate-all-around silicon light modulator for ultra high speed operation,” Sens. Act. A 130–131, 220–227 (2006). [CrossRef]
  16. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant maicrorings (ARMs) with directly integrated thermal microphotonics,” CLEO Technical Digest, CPDB10 (2009).
  17. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–601 (1980). [CrossRef]
  18. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004). [CrossRef]
  19. K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, “Submicron omb-drive actuators fabricated on thin single crystalline silicon layer,” IEEE Trans. Ind. Electron. 56(4), 991–995 (2009). [CrossRef]
  20. D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited