OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7047–7054

High-speed laser modulation beyond the relaxation resonance frequency limit

Wesley D. Sacher, Eric J. Zhang, Brett A. Kruger, and Joyce K. S. Poon  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 7047-7054 (2010)
http://dx.doi.org/10.1364/OE.18.007047


View Full Text Article

Enhanced HTML    Acrobat PDF (327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and show that for coupling modulated lasers (CMLs), in which the output coupler is modulated rather than the pump rate, the conventional relaxation resonance frequency limit to the laser modulation bandwidth can be circumvented. The modulation response is limited only by the coupler. Although CMLs are best suited to microcavities, as a proof-of-principle, a coupling-modulated erbium-doped fiber laser is modulated at 1 Gb/s, over 10000 times its relaxation resonance frequency.

© 2010 OSA

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(140.4780) Lasers and laser optics : Optical resonators
(230.0230) Optical devices : Optical devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 19, 2010
Revised Manuscript: March 8, 2010
Manuscript Accepted: March 12, 2010
Published: March 22, 2010

Citation
Wesley D. Sacher, Eric J. Zhang, Brett A. Kruger, and Joyce K. S. Poon, "High-speed laser modulation beyond the relaxation resonance frequency limit," Opt. Express 18, 7047-7054 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-7047


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Arakawa, K. Vahala, and A. Yariv, “Quantum noise and dynamics in quantum well and quantum wire lasers,” Appl. Phys. Lett. 45(9), 950–952 (1984). [CrossRef]
  2. I. Suemune, L. A. Coldren, M. Yamanishi, and Y. Kan, “Extremely wide modulation bandwidth in a low threshold current strained quantum well laser,” Appl. Phys. Lett. 53(15), 1378–1380 (1988). [CrossRef]
  3. R. Nagarajian, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992). [CrossRef]
  4. D. G. Deppe, H. Huang, and O. B. Shchekin, “Modulation characteristics of quantum-dot lasers: The influence of P-type doping and the electronic density of states on obtaining high speed,” IEEE J. Quantum Electron. 38(12), 1587–1593 (2002). [CrossRef]
  5. S. M. Kim, Y. Wang, M. Keever, and J. S. Harris, “High-frequency modulation characteristics of 1.3-µm InGaAs quantum dot lasers,” IEEE Photon. Technol. Lett. 16(2), 377–379 (2004). [CrossRef]
  6. S. Fathpour, Z. Mi, and P. Bhattachary, “High-speed quantum dot lasers,” J. Phys. D 38(13), 2103–2111 (2005). [CrossRef]
  7. M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10 Gbit/s data modulation using 1.3 µm InGaAs quantum dot lasers,” Electron. Lett. 41(5), 244–245 (2005). [CrossRef]
  8. I. Kaminow, T. Li, and A. Willner, eds., Optical Fiber Telecommunications V A: Components and Subsystems. Ch. 3 and 6 (Elsevier, 2008).
  9. R. Lang and K. Kobayashi, “Suppression of the relaxation oscillation in the modulated output of semiconductor lasers,” IEEE J. Quantum Electron. 12(3), 194–199 (1976). [CrossRef]
  10. J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett. 8(1), 34–36 (1996). [CrossRef]
  11. D. G. Deppe and H. Huang, “Quantum-dot vertical-cavity surface-emitting laser based on the Purcell effect,” Appl. Phys. Lett. 75(22), 3455–3457 (1999). [CrossRef]
  12. H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006). [CrossRef]
  13. L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, New York, 1995).
  14. A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, New York, 2007).
  15. A. N. Pisarchik, A. V. Kir'yanov, Y. O. Barmenkov, and R. Jaimes-Reategui, “Dynamics of an erbium-doped fiber laser with pump modulation: theory and experiment,” J. Opt. Soc. Am. B 22(10), 2107–2114 (2005). [CrossRef]
  16. W. D. Sacher and J. K. S. Poon, “Characteristics of microring resonators with waveguide-resonator coupling modulation,” J. Lightwave Technol. 27(17), 3800–3811 (2009). [CrossRef]
  17. W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16(20), 15741–15753 (2008). [CrossRef] [PubMed]
  18. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002). [CrossRef]
  19. W. M. J. Green, R. K. Lee, G. A. Derose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express 13(5), 1651–1659 (2005). [CrossRef] [PubMed]
  20. L. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback,” Opt. Express 15(15), 9194–9204 (2007). [CrossRef] [PubMed]
  21. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997). [CrossRef]
  22. F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988). [CrossRef]
  23. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett. 20(8), 875–877 (1995). [CrossRef] [PubMed]
  24. Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001). [CrossRef]
  25. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  26. W. D. Sacher and J. K. S. Poon, “Microring quadrature modulators,” Opt. Lett. 34(24), 3878–3880 (2009). [CrossRef] [PubMed]
  27. I. Kaminow, T. Li, and A. Willner, eds., Optical Fiber Telecommunications V B: Systems and Networks Ch. 2 (Elsevier, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited