OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7055–7063

Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes

Z.Y. Zhang, Q. Jiang, M. Hopkinson, and R. A. Hogg  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 7055-7063 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (596 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Different capping of quantum dot (QD) materials is known to produce different degrees of intermixing during a post-growth thermal annealing process. We report a study of the effect of different degrees of intermixing on modulation beryllium doped quantum dot superluminescent light emitting diodes (QD-SLEDs). The intermixed QD-SLEDs show high device performance whilst achieving a large central emission wavelength shift of ~100nm compared to the as-grown device. The evolution of the emission spectra and power with drive current suggest a transition from QD-like to QW-like behavior with increasing degree of intermixing. A selective area intermixed QD-SLED is demonstrated, and with optimized differential intermixing, such structures should allow ultra-broadband sources to be realized.

© 2010 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(250.0250) Optoelectronics : Optoelectronics
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optical Devices

Original Manuscript: February 4, 2010
Revised Manuscript: March 3, 2010
Manuscript Accepted: March 7, 2010
Published: March 22, 2010

Z.Y. Zhang, Q. Jiang, M. Hopkinson, and R. A. Hogg, "Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes," Opt. Express 18, 7055-7063 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999). [CrossRef]
  2. Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Sun, and F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16(1), 27–29 (2004). [CrossRef]
  3. M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007). [CrossRef]
  4. Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007). [CrossRef]
  5. H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007). [CrossRef]
  6. Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1046 (2007). [CrossRef]
  7. S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18(1), 58–60 (2006). [CrossRef]
  8. Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum dot superluminescent light emitting diodes,” Adv. Opt. Photon. 2(2), 201–228 (2010). [CrossRef]
  9. C. L. Walker, A. C. Bryce, and J. H. Marsh, “Non absorbing mirror laser with improved catastrophic optical damage level”, Lasers and Electro-Optics Society, 2002. LEOS 2002. The 15th Annual Meeting of the IEEE, 2, 643 – 644, (2002)
  10. S. Mokkapati, S. Du, M. Buda, L. Fu, H. H. Tan, and C. Jagadish, “Multiple wavelength InGaAs quantum dot lasers using ion implantation induced intermixing,” Nano. Res. Lett. 2(11), 550–553 (2007). [CrossRef]
  11. H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008). [CrossRef]
  12. Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett. 33(11), 1210–1212 (2008). [CrossRef] [PubMed]
  13. Z. Y. Zhang, Q. Jiang, and R. A. Hogg, “Tunable Interband and Intersubbnad transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by post-growth annealing process,” Appl. Phys. Lett. 93(7), 071111 (2008). [CrossRef]
  14. Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type–doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20(5), 055204 (2009). [CrossRef] [PubMed]
  15. Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R.A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2μm,” Electron. Lett. 46(4), 295-296 (2010). [CrossRef]
  16. B. S. Ooi, K. Mcilvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Mash, and J. S. Roberts, “Selective quantum-well intermixing in GaAs/AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997). [CrossRef]
  17. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004). [CrossRef] [PubMed]
  18. J. H. Song, K. Kim, Y. A. Leem, and G. Kim, “High-Power Broadband Superluminescent Diode Using Selective Area Growth at 1.5 μ m Wavelength,” IEEE Photon. Technol. Lett. 19(19), 1415–1417 (2007). [CrossRef]
  19. C. K. Chia, S. J. Chua, J. R. Dong, and S. L. Teo, “Ultra-wide band quantum dot light emitting device by post- fabrication laser annealing,” Appl. Phys. Lett. 90(6), 061101 (2007). [CrossRef]
  20. T. K. Ong, M. Yin, Z. Yu, Y. C. Chan, and Y. L. Lam, “High performance quantum well intermixed superluminescent diodes,” Meas. Sci. Technol. 15(8), 1591–1595 (2004). [CrossRef]
  21. P. Bardella, M. Rossetti, and I. Montrosset, “Modeling of Broadband Chirped Quantum-Dot Super-Luminescent Diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 785–791 (2009). [CrossRef]
  22. H. D. Sun, R. Macaluso, M. D. Dawson, F. Robert, A. C. Bryce, J. H. Marsh, and H. Riechert, “Characterization of selective quantum well intermixing in 1.3 μm GaInNAs/GaAs structures,” J. Appl. Phys. 94(3), 1550–1556 (2003). [CrossRef]
  23. L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAsÕGaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett. 82(16), 2613–2615 (2003). [CrossRef]
  24. http://www.denselight.com/tech.htm

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 3 Fig. 2
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited