OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7157–7172

Analytical first-order extension of coupled-mode theory for waveguide arrays

Christophe Minot, Nadia Belabas, Juan Ariel Levenson, and Jean-Marie Moison  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 7157-7172 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (944 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Coupled mode theory for waveguide arrays is extended to next-nearest neighbor interactions using propagation equations. Both lateral diffraction and propagation of Floquet-Bloch waves are altered respectively by extra coupling and non-orthogonality between isolated waveguide modes. The analytical formula describing the distortions of the diffraction relation is validated by direct numerical simulation for weakly coupled InP and GaAs shallow ridge waveguides and for strongly coupled Si-SiO2 buried strip waveguides. The impact of extended coupled mode theory on propagation and diffraction design in waveguide arrays is discussed with reference to available experimental work.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(350.3950) Other areas of optics : Micro-optics
(080.1238) Geometric optics : Array waveguide devices

ToC Category:
Integrated Optics

Original Manuscript: July 23, 2009
Revised Manuscript: October 8, 2009
Manuscript Accepted: October 12, 2009
Published: March 24, 2010

Christophe Minot, Nadia Belabas, Juan Ariel Levenson, and Jean-Marie Moison, "Analytical first-order extension of coupled-mode theory for waveguide arrays," Opt. Express 18, 7157-7172 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003). [CrossRef] [PubMed]
  2. J. Fleischer, G. Bartal, O. Cohen, T. Schwartz, O. Manela, B. Freedman, M. Segev, H. Buljan, and N. Efremidis, “Spatial photonics in nonlinear waveguide arrays,” Opt. Express 13(6), 1780–1796 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-06-1780 . [CrossRef] [PubMed]
  3. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000). [CrossRef] [PubMed]
  4. T. Pertsch, P. Dannberg, W. Elflein, A. Brauer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83(23), 4752–4755 (1999). [CrossRef]
  5. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optics Bloch oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999). [CrossRef]
  6. F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, and S. Longhi, “Decay control via discrete-to-continuum coupling modulation in an optical waveguide system,” Phys. Rev. Lett. 101(14), 143602 (2008). [CrossRef] [PubMed]
  7. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007). [CrossRef] [PubMed]
  8. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100(1), 013906 (2008). [CrossRef] [PubMed]
  9. K. G. Makris, D. N. Christodoulides, O. Peleg, M. Segev, and D. Kip, “Optical transitions and Rabi oscillations in waveguide arrays,” Opt. Express 16(14), 10309–10314 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-14-10309 . [CrossRef] [PubMed]
  10. D. N. Christodoulides and E. D. Eugenieva, “Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays,” Phys. Rev. Lett. 87(23), 233901 (2001). [CrossRef] [PubMed]
  11. A. Fratalocchi, G. Assanto, K. A. Brzdakiewicz, and M. A. Karpierz, “All-optical switching and beam steering in tunable waveguide arrays,” Appl. Phys. Lett. 86(5), 051112 (2005). [CrossRef]
  12. R. A. Vicencio, M. I. Molina, and Y. S. Kivshar, “Switching of discrete optical solitons in engineered waveguide arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(2), 026602 (2004). [CrossRef] [PubMed]
  13. A. L. Jones, “Coupling of optical fibers and scattering in fibers,” J. Opt. Soc. Am. 55(3), 261–269 (1965). [CrossRef]
  14. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463(1-3), 1–126 (2008) (and references therein). [CrossRef]
  15. N. Belabas, S. Bouchoule, I. Sagnes, J. A. Levenson, C. Minot, and J. M. Moison, “Confining light flow in weakly coupled waveguide arrays by structuring the coupling constant: towards discrete diffractive optics,” Opt. Express 17(5), 3148–3156 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-3148 . [CrossRef] [PubMed]
  16. J. M. Moison, N. Belabas, C. Minot, and J. A. Levenson, “Discrete photonics in waveguide arrays,” Opt. Lett. 34(16), 2462–2464 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-16-2462 . [CrossRef] [PubMed]
  17. A. Szameit, H. Trompeter, M. Heinrich, F. Dreisow, U. Peschel, T. Pertsch, S. Nolte, F. Lederer, and A. Tünnermann, “Fresnel’s laws in discrete optical media,” N. J. Phys. 10(10), 103020 (2008). [CrossRef]
  18. A. Hardy and W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3(5), 1135–1146 (1985). [CrossRef]
  19. W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11(3), 963–983 (1994). [CrossRef]
  20. L. Eyges and P. Wintersteiner, “Modes of an array of dielectric waveguides,” J. Opt. Soc. Am. 71, 1351–1360 (1981), http://www.opticsinfobase.org/abstract.cfm?URI=josa-71-11-1351 .
  21. A. Kaplan and S. Ruschin, “Characterization and performance evaluation of coupled multiwaveguide arrays,” J. Lightwave Technol. 17(10), 1884–1889 (1999), http://jlt.osa.org/abstract.cfm?URI=JLT-17-10-1884 . [CrossRef]
  22. M. L. Cooper and S. Mookherjea, “Numerically-assisted coupled-mode theory for silicon waveguide couplers and arrayed waveguides,” Opt. Express 17(3), 1583–1599 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-03-1583 . [CrossRef] [PubMed]
  23. G. L. Alfimov, P. G. Kevrekidis, V. V. Konotop, and M. Salerno, “Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 1046608 (2002). [CrossRef]
  24. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81(16), 3383–3386 (1998). [CrossRef]
  25. T. Pertsch, T. Zentgraf, U. Perchel, A. Brauer, and F. Lederer, “Anomalous refraction diffraction in discrete optical systems,” Phys. Rev. Lett. 88(9), 093901 (2002). [CrossRef] [PubMed]
  26. D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett. 83, 4752–4754 (1999).
  27. B. E. A. Saleh, and M. C. Teich, “Fundamentals of Photonics,” Wiley-Interscience, 2007.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited