OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7184–7189

Range resolved lidar for long distance ranging with sub-millimeter resolution

Mohammad Umar Piracha, Dat Nguyen, Dimitrios Mandridis, Tolga Yilmaz, Ibrahim Ozdur, Sarper Ozharar, and Peter J Delfyett  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 7184-7189 (2010)
http://dx.doi.org/10.1364/OE.18.007184


View Full Text Article

Enhanced HTML    Acrobat PDF (510 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A lidar technique employing temporally stretched, frequency chirped pulses from a 20 MHz mode locked laser is presented. Sub-millimeter resolution at a target range of 10.1 km (in fiber) is observed. A pulse tagging scheme based on phase modulation is demonstrated for range resolved measurements. A carrier to noise ratio of 30 dB is observed at an unambiguous target distance of 30 meters in fiber.

© 2010 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.4050) Lasers and laser optics : Mode-locked lasers
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing

History
Original Manuscript: October 23, 2009
Revised Manuscript: January 5, 2010
Manuscript Accepted: February 22, 2010
Published: March 24, 2010

Citation
Mohammad Umar Piracha, Dat Nguyen, Dimitrios Mandridis, Tolga Yilmaz, Ibrahim Ozdur, Sarper Ozharar, and Peter J Delfyett, "Range resolved lidar for long distance ranging with sub-millimeter resolution," Opt. Express 18, 7184-7189 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-7184


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Fujii, and T. Fukuchi, Laser Remote Sensing (Boca Raton, Taylor & Francis, 2005).
  2. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009). [CrossRef]
  3. H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry,” Science 323(5916), 897–900 (2009). [CrossRef] [PubMed]
  4. B. W. Schilling, D. N. Barr, G. C. Templeton, L. J. Mizerka, and C. W. Trussell, “Multiple-return laser radar for three-dimensional imaging through obscurations,” Appl. Opt. 41(15), 2791–2799 (2002). [CrossRef] [PubMed]
  5. M.-C. Amann, T. Bosch, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001). [CrossRef]
  6. R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006). [CrossRef]
  7. X. Sun, J. B. Abshire, M. A. Krainak, and W. B. Hasselbrack, “Photon counting pseudorandom noise code laser altimeters, “Proc. SPIE 6771, 677100.1 – 677100.9 (2007).
  8. P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008). [CrossRef] [PubMed]
  9. C. J. Karlsson, F. A. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39(21), 3716–3726 (2000). [CrossRef]
  10. R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–37 (2001). [CrossRef]
  11. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44(35), 7621–7629 (2005). [CrossRef] [PubMed]
  12. M. J. Halmos, “Synthetic aperture ladar with chirped modelocked waveform, “US Patent 7505488, (2009).
  13. K. W. Holman, D. G. Kocher, and S. Kaushik, “MIT/LL development of broadband linear frequency chirp for high-resolution ladar,” Proc. SPIE 6572, 65720J.1 – 65720J.8 (2007).
  14. S. Lee, D. Mandridis, and P. J. Delfyett., “eXtreme chirped pulse oscillator operating in the nanosecond stretched pulse regime,” Opt. Express 16(7), 4766–4773 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited