OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7219–7227

Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser

Hui Lv, Yonglin Yu, Tan Shu, Dexiu Huang, Shan Jiang, and Liam P. Barry  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 7219-7227 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (578 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic ultra-wideband (UWB) pulses are generated by direct current modulation of a semiconductor optical amplifier (SOA) section of an SOA-integrated sampled grating distributed Bragg reflector (SGDBR) laser. Modulation responses of the SOA section of the laser are first simulated with a microwave equivalent circuit model. Simulated results show a resonance behavior indicating the possibility to generate UWB signals with complex shapes in the time domain. The UWB pulse generation is then experimentally demonstrated for different selected wavelength channels with an SOA-integrated SGDBR laser.

© 2010 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(320.5550) Ultrafast optics : Pulses
(060.5625) Fiber optics and optical communications : Radio frequency photonics
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 16, 2009
Revised Manuscript: February 27, 2010
Manuscript Accepted: March 4, 2010
Published: March 24, 2010

Hui Lv, Yonglin Yu, Tan Shu, Dexiu Huang, Shan Jiang, and Liam P. Barry, "Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser," Opt. Express 18, 7219-7227 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Fed. Commun. Commission, Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Apr. 2002. Tech. Rep., ET-Docket 98–153, FCC02–48.
  2. D. Porcino, P. Research, and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003). [CrossRef]
  3. M. Ghavami, L. B. Michael, and R. Kohno, Ultra wide-band signals and systems in communication engineering, (Wiley, West Sussex, England, 2004).
  4. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultra-wideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
  5. Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006). [CrossRef] [PubMed]
  6. J. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photon. Technol. Lett. 19(9), 644–646 (2007). [CrossRef]
  7. C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007). [CrossRef]
  8. F. Zeng and J. Yao, “Investigation of phase modulator based all-optical bandpass filter,” J. Lightwave Technol. 23(4), 1721–1728 (2005). [CrossRef]
  9. F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006). [CrossRef]
  10. X. Yu, T. Braidwood Gibbon, M. Pawlik, S. Blaaberg, and I. Tafur Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17(12), 9680–9687 (2009). [CrossRef] [PubMed]
  11. A. Kaszubowska-Anandarajah, E. Connolly, L. P. Barry, and P. Perry, “Demonstration of wavelength packet switched radio-over-fiber system,” IEEE Photon. Technol. Lett. 19(4), 200–202 (2007). [CrossRef]
  12. H. Chen, M. Chen, C. Qiu, and S. Xie, “A novel composite method for ultra-wideband doublet pulses generation,” IEEE Photon. Technol. Lett. 19(24), 2021–2023 (2007). [CrossRef]
  13. W. Zhang, J. Sun, J. Wang, C. Cheng, and X. Zhang, “Ultra-wideband pulse train generation based on turbo-switch structures,” IEEE Photon. Technol. Lett. 21(5), 271–273 (2009). [CrossRef]
  14. S. Fu, W.-D. Zhong, Y. J. Wen, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008). [CrossRef]
  15. S.-L. Lee, M. E. Heimbuch, D. A. Cohen, L. A. Coldren, and S. P. DenBaars, “Integration of semiconductor laser amplifiers with sampled grating tunable lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 615–627 (1997). [CrossRef]
  16. R. S. Tucker and I. P. Kaminow, “High-frequency characteristics of directly modulated InGaAsP ridge waveguide and buried heterostructure lasers,” J. Lightwave Technol. 2(4), 385–393 (1984). [CrossRef]
  17. A. D. Barman, I. Sengupta, and P. K. Basu, “A simple SPICE model for traveling wave semiconductor laser amplifier,” Microw. Opt. Technol. Lett. 49(7), 1558–1561 (2007). [CrossRef]
  18. F. Delpiano, R. Paoletti, P. Audagnotto, and M. Puleo, ““High frequency modeling and characterization of high performanceDFB laser modules,” IEEE Trans. Comp., Packag,” Manufact. Technol. 17, 412–417 (1994).
  19. J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 5(3), 851–860 (1999). [CrossRef]
  20. R. Zhang, L. Dong, D. Wang, J. Zhang, L. Chen, S. Jiang, and Y. Yu, “Sampled grating DBR lasers with 35nm quasi-continuous tuning range,” Chin. J. Semicond. 29, 2301–2303 (2008).
  21. H. Lv, T. Shu, Y. Yu, D. Huang, L. Dong, and R. Zhang, “Fast power control and wavelength switching in a tunable SOA-integrated SGDBR laser,” IEEE OptoElectronics and Communications Conference (OECC 2009), Pap. ThPD4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited