OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7307–7322

Efficient computation of photonic crystal waveguide modes with dispersive material

Kersten Schmidt and Roman Kappeler  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 7307-7322 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (4202 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optimization of PhC waveguides is a key issue for successfully designing PhC devices. Since this design task is computationally expensive, efficient methods are demanded. The available codes for computing photonic bands are also applied to PhC waveguides. They are reliable but not very efficient, which is even more pronounced for dispersive material. We present a method based on higher order finite elements with curved cells, which allows to solve for the band structure taking directly into account the dispersiveness of the materials. This is accomplished by reformulating the wave equations as a linear eigenproblem in the complex wave-vectors k. For this method, we demonstrate the high efficiency for the computation of guided PhC waveguide modes by a convergence analysis.

© 2010 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

Original Manuscript: January 12, 2010
Revised Manuscript: February 18, 2010
Manuscript Accepted: February 21, 2010
Published: March 24, 2010

Kersten Schmidt and Roman Kappeler, "Efficient computation of photonic crystal waveguide modes with dispersive material," Opt. Express 18, 7307-7322 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos and S. G. Johnson, Photonic Crystals, 2nd ed. (Princeton University Press, 2008).
  2. M. Agio and C. M. Soukoulis, "Ministop bands in single-defect photonic crystal waveguides," Phys. Rev. E 64(5), 055603 (2001). [CrossRef]
  3. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3(4), 211-219 (2004). URL http://dx.doi.org/10.1038/nmat1097. [CrossRef] [PubMed]
  4. T. F. Krauss, "Why do we need slow light," Nat. Photon. 2(8), 448-450 (2008). URL http://www.nature.com/nphoton/journal/v2/n8/full/nphoton.2008.139.html. [CrossRef]
  5. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, "Systematic design of flat band slow light in photonic crystal waveguides," Opt. Express 16(9), 6227-6232 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-9-6227. [CrossRef] [PubMed]
  6. S. Kubo, D. Mori, and T. Baba, "Low-group-velocity and low-dispersion slow light in photonic crystal waveguides," Opt. Lett. 32(20), 2981-2983 (2007). URL http://ol.osa.org/abstract.cfm?URI=ol-32-20-2981. [CrossRef] [PubMed]
  7. N. Kono and M. Koshiba, "Three-dimensional finite element analysis of nonreciprocal phase shifts in magneto-photonic crystal waveguides," Opt. Express 13(23), 9155-9166 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-23-9155. [CrossRef] [PubMed]
  8. K. Busch, "Photonic band structure theory: assessment and perspectives," C. R. Physique 3(53), 53-66 (2002). [CrossRef]
  9. D. C. Dobson, J. Gopalakrishnan, and J. E. Pasciak, "An Efficient Method for Band Structure Calculations in 3D Photonic Crystals," J. Comput. Phys. 161(2), 668-679 (2000). [CrossRef]
  10. D. Boffi, M. Conforti, and L. Gastaldi, "Modified edge finite elements for photonic crystals," Numer. Math. 105(2), 249-266 (2006). [CrossRef]
  11. K. Schmidt and P. Kauf, "Computation of the band structure of two-dimensional Photonic Crystals with hp Finite Elements," Comp. Meth. App. Mech. Engr. 198, 1249-1259 (2009). [CrossRef]
  12. J. Smajic, C. Hafner, K. Rauscher, and D. Erni, "Computation of Radiation Leakage in Photonic Crystal Waveguides," in Proc. Progr. Electromagn. Res. Symp. 2004, Pisa, Italy, pp. 21-24 (2004).
  13. K. Sakoda, Optical Properties of Photonic Crystals, Springer Series in Optical Sciences, 2nd ed. (Springer, Berlin, 2005).
  14. S. Soussi, "Convergence of the supercell method for defect modes calculations in photonic crystals," SIAM J. Numer. Anal. 43, 1175-1201 (2005). [CrossRef]
  15. P. Kuchment and B. Ong, "On guided waves in photonic crystal waveguides," in Waves in Periodic and Random Media, vol. 339 of Contemp. Math., pp. 105-115 (AMS, Providence, USA, 2004).
  16. H. Ammari and F. Santosa, "Guided Waves in a Photonic Bandgap Structure with a Line Defect," SIAM J. Appl. Math. 64(6), 2018-2033 (2004). URL http://link.aip.org/link/?SMM/64/2018/1. [CrossRef]
  17. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8(3), 173-190 (2001). URL http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173. [CrossRef] [PubMed]
  18. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, London, 1995).
  19. G. Stark, M. Mishrikey, F. Robin, H. Jäckel, C. Hafner, R. Vahdieck, and D. Erni, "Position dependence of FDTD mode detection in photonic crystal systems," Int. J. Numer. Model. 29, 201-218 (2009). [CrossRef]
  20. I. Babuška and B. Q. Guo, "The h, p and h-p version of the finite-element method - basic theory and applications," Adv. Eng. Software 15, 159-174 (1992). [CrossRef]
  21. C. Schwab, p- and hp- Finite Element Methods - Theory and Applications in Solid and Fluid Mechanics (Oxford Science Publications, 1998).
  22. A. von Rhein, S. Greulich-Weber, and R. B. Wehrspohn, "Berechnung von photonischen Kristallen mit Hilfe des Comsol-Elektromagnetikmoduls," in Proc. of the COMSOL Users Conf. 2006, Frankfurt, Germany, pp. 91-96 (2006).
  23. W. Jiang, R. Chen, and X. Lu, "Theory of light refraction at the surface of a photonic crystal," Phys. Rev. B 71, 245115 (2005). [CrossRef]
  24. C. Engström and M. Richter, "On the Spectrum of an Operator Pencil with Applications to Wave Propagation in Periodic and Frequency Dependent Materials," SIAM J. Appl. Math. 70(1), 231-247 (2009). URL http: //link.aip.org/link/?SMM/70/231/1. [CrossRef]
  25. C. Engström, C. Hafner, and K. Schmidt, "Computations of lossy Bloch waves in two-dimensional photonic crystals," J. Comput. Theory Nanosci. 6, 775-783 (2009). [CrossRef]
  26. P. Frauenfelder and C. Lage, "Concepts - An Object-Oriented Software Package for Partial Differential Equations," Math. Model. Numer. Anal. 36(5), 937-951 (2002). URL http://www.edpsciences.org/ articles/m2an/abs/2002/05/m2anns12/m2anns12.html. [CrossRef]
  27. K. Busch, G. Schneider, L. Tkeshelashvili, and H. Uecker, "Justification of the nonlinear Schrödinger equation in spatially periodic media," Z. Angew. Math. Phys. 57(6), 905-939 (2006). [CrossRef]
  28. P. Kuchment, Floquet Theory for Partial Differential Equations (Birkhäuser Verlag, Basel, 1993). [CrossRef]
  29. P. Kuchment, "The mathematics of photonic crystals," in Mathematical modeling in optical science, vol. 22 of Frontiers Appl. Math., pp. 207-272 (SIAM, Philadelphia, USA, 2001). [CrossRef]
  30. F. Tisseur and K. Meerbergen, "The Quadratic Eigenvalue Problem," SIAM Review 43(2), 235-286 (2001). [CrossRef]
  31. G. E. Karniadakis and S. J. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics (Oxford University Press, Oxford, 2005).
  32. Concepts Development Team, Webpage of Numerical C++ Library Concepts 2 (2009). URL http://www. concepts.math.ethz.ch.
  33. S. Adachi, "Optical properties of In1−xGaxAsyP1−y alloys," Phys. Rev. B 39(17), 12,612-12,621 (1989). [CrossRef]
  34. P. Strasser, R. Flückiger, R. Wüest, F. Robin, and H. Jäckel, "InP-based compact photonic crystal directional coupler with large operation range," Opt. Express 15(13), 8472-8478 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-13-8472. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited