OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7323–7330

Wideband amplification using orthogonally polarized pulse trapping in birefringent fibers

Eiji Shiraki and Norihiko Nishizawa  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 7323-7330 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (754 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyzed the amplification effect of orthogonally polarized pulse trapping in birefringent fibers both experimentally and numerically. Trapped pulses were amplified over a wide wavelength range of 1650-1800 nm accompanying the red-shift. The maximum effective gain was 26 dB for a 140 m-long low birefringent fiber. It was clarified that this amplification effect is caused by stimulated Raman scattering between orthogonally polarized pulses.

© 2010 OSA

OCIS Codes
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 21, 2010
Revised Manuscript: March 15, 2010
Manuscript Accepted: March 15, 2010
Published: March 24, 2010

Eiji Shiraki and Norihiko Nishizawa, "Wideband amplification using orthogonally polarized pulse trapping in birefringent fibers," Opt. Express 18, 7323-7330 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  2. J. C. Knight and D. V. Skryabin, “Nonlinear waveguide optics and photonic crystal fibers,” Opt. Express 15(23), 15365–15376 (2007). [CrossRef] [PubMed]
  3. N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45(11), 1446–1455 (2009). [CrossRef]
  4. N. Nishizawa and T. Goto, “Compact System of Wavelength-Tunable Femtosecond Soliton Pulse Generation Using Optical Fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999). [CrossRef]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef]
  6. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000). [CrossRef]
  7. N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L365–L367 (2001). [CrossRef]
  8. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26(6), 358–360 (2001). [CrossRef]
  9. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008).
  10. M. N. Islam, C. D. Poole, and J. P. Gordon, “Soliton trapping in birefringent optical fibers,” Opt. Lett. 14(18), 1011–1013 (1989). [CrossRef] [PubMed]
  11. N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27(3), 152–154 (2002). [CrossRef]
  12. N. Nishizawa and T. Goto, “Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zerodispersion wavelength,” Opt. Express 10(21), 1151–1160 (2002). [PubMed]
  13. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibers,” Nat. Photonics 1(11), 653–657 (2007). [CrossRef]
  14. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008). [CrossRef] [PubMed]
  15. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16(19), 14435–14447 (2008). [CrossRef] [PubMed]
  16. J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34(2), 115–117 (2009). [CrossRef] [PubMed]
  17. S. Hill, C. E. Kuklewicz, U. Leonhardt, and F. König, “Evolution of light trapped by a soliton in a microstructured fiber,” Opt. Express 17(16), 13588–13600 (2009). [CrossRef] [PubMed]
  18. N. Nishizawa and T. Goto, “Ultrafast all optical switching by use of pulse trapping across zero-dispersion wavelength,” Opt. Express 11(4), 359–365 (2003). [CrossRef] [PubMed]
  19. N. Nishizawa and K. Itoh, “Control of optical pulse at visible region using pulse trapping by soliton pulse in photonic crystal fibers,” Appl. Phys. Express 2, 062501 (2009). [CrossRef]
  20. N. Nishizawa and T. Goto, “Trapped pulse generation by femtosecond soliton pulse in birefringent optical fibers,” Opt. Express 10(5), 256–261 (2002). [PubMed]
  21. N. Nishizawa, Y. Ukai, and T. Goto, “Ultrafast all optical switching using pulse trapping in birefringent fibers,” Opt. Express 13(20), 8128–8135 (2005). [CrossRef] [PubMed]
  22. C. R. Menyuk, M. N. Islam, and J. P. Gordon, “Raman effect in birefringent optical fibers,” Opt. Lett. 16(8), 566–568 (1991). [CrossRef] [PubMed]
  23. C.-J. Chen, C. R. Menyuk, M. N. Islam, and R. H. Stolen, “Numerical study of the Raman effect and its impact on soliton-dragging logic gates,” Opt. Lett. 16(21), 1647–1649 (1991). [CrossRef] [PubMed]
  24. N. Nishizawa, A. Muto, and T. Goto, “Measurement of chromatic dispersion of optical fibers using wavlength-tunable soliton pulses,” Jpn. J. Appl. Phys. 39(Part 1, No. 8), 4990–4992 (2000). [CrossRef]
  25. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31(21), 3086–3088 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (1480 KB)     
» Media 2: MOV (1023 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited