OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7340–7346

A bidirectional tunable optical diode based on periodically poled LiNbO3

Qin Wang, Fei Xu, Zi-yan Yu, Xiao-shi Qian, Xi-kui Hu, Yan-qing Lu, and Hui-Tian Wang  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 7340-7346 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2484 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a bidirectional tunable optical diode based on a periodically poled lithium niobate (PPLN) with defect. An acoustic wave propagates together with the light beam so that a collinear photon-phonon interaction happens, which affects the nonlinear optical processes in PPLN. The fundamental wave exhibits an optical diode effect, i.e., the light only may travel toward a single direction while the opposite way is isolated. However, the acoustic wave could be used to adjust the contrast of optical isolation from −1 to 1. A direction-optional operation is thus realized. Moreover, the advantages of our tunable PPLN optical diode are also discussed.

© 2010 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(170.1065) Medical optics and biotechnology : Acousto-optics

ToC Category:
Optical Devices

Original Manuscript: January 21, 2010
Revised Manuscript: February 26, 2010
Manuscript Accepted: March 19, 2010
Published: March 24, 2010

Qin Wang, Fei Xu, Zi-yan Yu, Xiao-shi Qian, Xi-kui Hu, Yan-qing Lu, and Hui-Tian Wang, "A bidirectional tunable optical diode based on periodically poled LiNbO3," Opt. Express 18, 7340-7346 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Q. Lu, M. Xiao, and G. J. Salamo, “Coherent microwave generation in a nonlinear photonic crystal,” IEEE J. Quantum Electron. 38(5), 481–485 (2002). [CrossRef]
  2. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998). [CrossRef]
  3. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997). [CrossRef]
  4. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992). [CrossRef]
  5. J. Wang, J. Q. Sun, X. L. Zhang, and D. X. Huang, “All-optical ultrawideband pulse generation using cascaded periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(3), 292–299 (2009). [CrossRef]
  6. T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photon. Technol. Lett. 11(8), 1027–1029 (1999). [CrossRef]
  7. X. M. Liu, H. Y. Zhang, and Y. H. Li, “Optimal design for the quasi-phase- matching three-wave mixing,” Opt. Express 9(12), 631–636 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-12-631 . [CrossRef] [PubMed]
  8. K. Gallo and G. Assanto, “All-optical diode based on second-harmonic generation in an asymmetric waveguide,” J. Opt. Soc. Am. B 16(2), 267–269 (1999). [CrossRef]
  9. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314–316 (2001). [CrossRef]
  10. Y. Fukuchi, M. Akaike, and J. Maeda, “Characteristics of all-optical ultrafast gate switches using cascade of second-harmonic generation and difference frequency mixing in quasi-phase-matched lithium niobate waveguides,” IEEE J. Quantum Electron. 41(5), 729–734 (2005). [CrossRef]
  11. S. M. Gao, C. X. Yang, X. S. Xiao, Y. Tian, Z. You, and G. F. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” J. Lightwave Technol. 25(3), 710–718 (2007). [CrossRef]
  12. X. M. Liu, H. Y. Zhang, Y. L. Guo, and Y. H. Li, “Optimal Design and Applications for Quasi-Phase-Matching Three-Wave Mixing,” IEEE J. Quantum Electron. 38(9), 1225–1233 (2002). [CrossRef]
  13. K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16(5), 741–753 (1999). [CrossRef]
  14. L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, “Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration,” IEEE J. Quantum Electron. 39(11), 1486–1491 (2003). [CrossRef]
  15. W. J. Lu, Y. P. Chen, L. H. Miu, X. F. Chen, Y. X. Xia, and X. L. Zeng, “All-optical tunable group-velocity control of femtosecond pulse by quadratic nonlinear cascading interactions,” Opt. Express 16(1), 355–361 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-355 . [CrossRef] [PubMed]
  16. Z. F. Yu and S. H. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009). [CrossRef]
  17. Z. Y. Yu, F. Xu, F. Leng, X. S. Qian, X. F. Chen, and Y. Q. Lu, “Acousto-optic tunable second harmonic generation in periodically poled LiNbO3.,” Opt. Express 17(14), 11965–11971 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11965 . [CrossRef] [PubMed]
  18. A. Yariv, and P. Yeh, Optical Waves in Crystals (John Wiley and Sons, New York, 1984), Chap. 9.
  19. Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).
  20. H. Gnewuch, N. K. Zayer, C. N. Pannell, G. W. Ross, and P. G. R. Smith, “Broadband monolithic acousto-optic tunable filter,” Opt. Lett. 25(5), 305–307 (2000). [CrossRef]
  21. Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, “Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800 MHz,” Appl. Phys. Lett. 53(15), 1381–1383 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited