OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7470–7478

Real time random laser properties of Rhodamine-doped di-ureasil hybrids

Edison Pecoraro, Sara García-Revilla, Rute A. S. Ferreira, Rolindes Balda, Luís D. Carlos, and Joaquín Fernández  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 7470-7478 (2010)
http://dx.doi.org/10.1364/OE.18.007470


View Full Text Article

Enhanced HTML    Acrobat PDF (679 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This investigation explores, for the first time, the random laser behavior of ground powder obtained from organic-inorganic hybrid materials based on Rhodamine 6G incorporated into a di-ureasil matrix. The experimental results, both in the spectral and temporal domains, obtained by pumping with picosecond laser pulses, show the existence of efficient random laser emission in this system. Finally, the random laser performance is compared with the one of other Rhodamine-doped solid state silica compounds.

© 2010 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(290.4210) Scattering : Multiple scattering
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 11, 2010
Revised Manuscript: March 9, 2010
Manuscript Accepted: March 14, 2010
Published: March 25, 2010

Citation
Edison Pecoraro, Sara García-Revilla, Rute A. S. Ferreira, Rolindes Balda, Luís D. Carlos, and Joaquín Fernández, "Real time random laser properties of Rhodamine-doped di-ureasil hybrids," Opt. Express 18, 7470-7478 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-7470


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Reisfeld, “Prospects of sol-gel technology towards luminescent materials,” Opt. Mater. 16(1-2), 1–7 (2001). [CrossRef]
  2. C. Sanchez, B. Lebeau, F. Chaput, and J. P. Boilot, “Optical Properties of Functional Hybrid Organic-Inorganic Nanocomposites,” Adv. Mater. 15(23), 1969–1994 (2003). [CrossRef]
  3. S. Y. Lam and M. J. Damzen, “Characterisation of solid-state dyes and their use as tunable laser amplifiers,” Appl. Phys. B 77(6-7), 577–584 (2003). [CrossRef]
  4. O. García, L. Garrido, R. Sastre, A. Costela, and I. García-Moreno, “Synthetic strategies for hybrid materials to improve properties for optoelectronic applications,” Adv. Funct. Mater. 18(14), 2017–2025 (2008). [CrossRef]
  5. D. Avnir, D. Levy, and R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped Rhodamine-6G,” J. Phys. Chem. 88(24), 5956–5959 (1984). [CrossRef]
  6. R. Reisfeld, D. Brusilovsky, M. Eyal, E. Miron, Z. Burstein, and J. Irvi, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160(1), 43–44 (1989). [CrossRef]
  7. E. T. Knobbe, B. Dunn, P. D. Fuqua, and F. Nishida, “Laser behavior and photostability characteristics of organic-dye doped silicate gel materials,” Appl. Opt. 29(18), 2729–2733 (1990). [CrossRef] [PubMed]
  8. J. C. Altman, R. E. Stone, B. Dunn, and F. Nishida, “Solid-state laser using a Rhodamine-doped silica-gel compound,” IEEE Photon. Technol. Lett. 3(3), 189–190 (1991). [CrossRef]
  9. T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J. P. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232(1-6), 343–351 (2004). [CrossRef]
  10. S. Grandi, C. Tomasi, P. Mustarelli, F. Clemente, and C. M. Carbonaro, “Characterisation of a new sol-gel precursor for a SiO2-Rhodamine 6G hybrid class II material,” J. Sol-Gel Sci. Techn. 41, 57–63 (2007). [CrossRef]
  11. G. Valverde-Aguilar, “Photostability of laser dyes incorporated in formamide SiO(2)ORMOSILs,” Opt. Mater. 28(10), 1209–1215 (2006). [CrossRef]
  12. V. de Zea Bermudez, L. D. Carlos, and L. Alcácer, “Sol-gel derived urea cross-linked organically modified silicates. 1. Room temperature mid-infrared spectra,” Chem. Mater. 11(3), 569–580 (1999). [CrossRef]
  13. D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. André, K. Dahmouche, V. de Zea Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil-zirconium oxocluster organic-inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008). [CrossRef]
  14. C. M. S. Vicente, E. Pecoraro, R. A. S. Ferreira, P. S. André, R. Nogueira, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids,” J. Sol-Gel Sci. Technol. 48(1-2), 80–85 (2008). [CrossRef]
  15. C. Molina, P. J. Moreira, R. R. Gonçalves, R. A. S. Ferreira, Y. Messaddeq, S. J. L. Ribeiro, O. Soppera, A. P. Leite, P. V. S. Marques, V. de Zea Bermudez, and L. D. Carlos, “Planar and UV written channel optical waveguides prepared with siloxane poly(oxyethylene)-zirconia organic-inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937–3945 (2005). [CrossRef]
  16. L. D. Carlos, R. A. S. Ferreira, V. de Zea Bermudez, and S. J. L. Ribeiro, “Lanthanide-Containing Light-Emitting Organic-Inorganic Hybrids: A Bet on the Future,” Adv. Mater. 21(5), 509–534 (2009). [CrossRef] [PubMed]
  17. E. Stathatos, P. Lianos, U. L. Stangar, and B. Orel, “Study of laser action of Coumarine-153 incorporated in sol-gel made silica/poly(propylene oxide) nanocomposite gels,” Chem. Phys. Lett. 345(5-6), 381–385 (2001). [CrossRef]
  18. D. C. Oliveira, Y. Messaddeq, K. Dahmouche, S. J. L. Ribeiro, R. R. Gonçalves, A. Vesperini, D. Gindre, and J.-M. Nunzi, “Distributed feedback multipeak laser emission in Rhodamine 6G doped organic-inorganic hybrids,” J. Sol-Gel Sci,” Techn. 40, 359–363 (2006).
  19. V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” JETP Lett. 5, 212–215 (1967).
  20. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008). [CrossRef]
  21. M. A. Noginov, Solid-State Random Lasers, (Springer, Berlin, 2005).
  22. H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003). [CrossRef]
  23. S. Mujumdar, V. Turck, R. Torre, and D. S. Wiersma, “Chaotic behavior of a random laser with static disorder,” Phys. Rev. A 76(3), 033807 (2007). [CrossRef]
  24. S. John and G. Pang, “Theory of lasing in a multiple-scattering medium,” Phys. Rev. A 54(4), 3642–3652 (1996). [CrossRef] [PubMed]
  25. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), 4256–4265 (1996). [CrossRef] [PubMed]
  26. X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85(1), 70–73 (2000). [CrossRef] [PubMed]
  27. A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87(21), 215503 (2001). [CrossRef] [PubMed]
  28. C. W. Lee, K. S. Wong, J. D. Huang, S. V. Frolov, and Z. V. Vardeny, “Femtosecond time-resolved laser action in poly(p-phenylene vinylene) films: stimulated emission in an inhomogeneously broadened exciton distribution,” Chem. Phys. Lett. 314(5-6), 564–569 (1999). [CrossRef]
  29. G. Zacharakis, G. Heliotis, G. Filippidis, D. Anglos, and T. G. Papazoglou, “Investigation of the laserlike behavior of polymeric scattering gain media under subpicosecond laser excitation,” Appl. Opt. 38(28), 6087–6092 (1999). [CrossRef]
  30. D. Anglos, A. Stassinopoulos, R. N. Das, G. Zacharakis, M. Psyllaki, R. Jakubiak, R. A. Vaia, E. P. Giannelis, and S. H. Anastasiadis, “Random laser action in organic-inorganic nanocomposites,” J. Opt. Soc. Am. B 21(1), 208–213 (2004). [CrossRef]
  31. S. García-Revilla, J. Fernández, M. A. Illarramendi, B. García-Ramiro, R. Balda, H. Cui, M. Zayat, and D. Levy, “Ultrafast random laser emission in a dye-doped silica gel powder,” Opt. Express 16(16), 12251–12263 (2008). [CrossRef] [PubMed]
  32. S. García-Revilla, J. Fernández, R. Balda, M. Zayat, and D. Levy, “Real-time spectroscopy of novel solid-state random lasers,” Proc. SPIE 7212, K1–K11 (2009).
  33. S. García-Revilla, M. Zayac, R. Balda, M. Al-Saleh, D. Levy, and J. Fernández, “1Low threshold random lasing in dye-doped silica nano powders,” Opt. Express 17(15), 13202–13215 (2009). [CrossRef] [PubMed]
  34. C. Kim, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Middle-infrared random lasing of Cr2+ doped ZnSe, ZnS, CdSe powders, powders imbedded in polymer liquid solutions, and polymer films,” Opt. Commun. 282(10), 2049–2052 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited