OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7479–7487

Highly efficient all-optical diode action based on light-tunneling heterostructures

Chunhua Xue, Haitao Jiang, and Hong Chen  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 7479-7487 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate the feasibility of constructing compact and highly efficient all-optical diodes (AODs) based on light tunneling mechanism in heterostructures. Due to light tunneling behaviors in heterostructures with one-dimensional photonic crystals (1D PC) and lossy metallic film, not only very large nonlinear permittivity of metal can be utilized sufficiently but also the structures with strongly nonreciprocal electric field distributions can be constructed. Finally we design a composite structure consisting of 1D PC-metal heterostructures to achieve the optimal unidirectional light transmission with 0.984 transmission contrasts, 42% transmission and 0.93 G W / c m 2 operating light power at working wavelength 557.2nm.

© 2010 OSA

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(230.1150) Optical devices : All-optical devices
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Optical Devices

Original Manuscript: February 2, 2010
Revised Manuscript: March 13, 2010
Manuscript Accepted: March 19, 2010
Published: March 26, 2010

Chunhua Xue, Haitao Jiang, and Hong Chen, "Highly efficient all-optical diode action based on light-tunneling heterostructures," Opt. Express 18, 7479-7487 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys. 76(4), 2023–2026 (1994). [CrossRef]
  2. M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66(18), 2324–2326 (1995). [CrossRef]
  3. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314–316 (2001). [CrossRef]
  4. K. Gallo and G. Assanto, “All-optical diode based on second-harmonic generation in an asymmetric waveguide,” J. Opt. Soc. Am. B 16(2), 267–269 (1999). [CrossRef]
  5. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19(9), 2241–2249 (2002). [CrossRef]
  6. M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 037602 (2005). [CrossRef] [PubMed]
  7. R. Philip, M. Anija, C. S. Yelleswarapu, and D. V. G. L. N. Rao, “Passive all-optical diode using asymmetric nonlinear absorption,” Appl. Phys. Lett. 91(14), 141118 (2007). [CrossRef]
  8. F. Biancalana, “All-optical diode action with quasiperiodic photonic crystals,” J. Appl. Phys. 104(9), 093113 (2008). [CrossRef]
  9. B. Maes, P. Bienstman, and R. Baets, “Switching in coupled nonlinear photonic-crystal resonators,” J. Opt. Soc. Am. B 22(8), 1778–1784 (2005). [CrossRef]
  10. H. Zhou, K. F. Zhou, W. Hu, Q. Guo, S. Lan, X. S. Lin, and A. V. Gopal, “All-optical diodes based on photonic crystal molecules consisting of nonlinear defect pairs,” J. Appl. Phys. 99(12), 123111 (2006). [CrossRef]
  11. N. S. Zhao, H. Zhou, Q. Guo, W. Hu, X. B. Yang, S. Lan, and X. S. Lin, “Design of highly efficient optical diodes based on the dynamics of nonlinear photonic crystal molecules,” J. Opt. Soc. Am. B 23(11), 2434–2440 (2006). [CrossRef]
  12. X. S. Lin, W. Q. Wu, H. Zhou, K. F. Zhou, and S. Lan, “Enhancement of unidirectional transmission through the coupling of nonlinear photonic crystal defects,” Opt. Express 14(6), 2429–2439 (2006). [CrossRef] [PubMed]
  13. R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal- dielectric photonic bandgap structures,” Opt. Lett. 24(20), 1416–1418 (1999). [CrossRef]
  14. N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93(12), 123902 (2004). [CrossRef] [PubMed]
  15. A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99(12), 127402 (2007). [CrossRef] [PubMed]
  16. J. Y. Guo, Y. Sun, Y. W. Zhang, H. Q. Li, H. T. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2 Pt 2), 026607 (2008). [CrossRef] [PubMed]
  17. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007). [CrossRef]
  18. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008). [CrossRef]
  19. G. Q. Du, H. T. Jiang, Z. S. Wang, and H. Chen, “Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals,” Opt. Lett. 34(5), 578–580 (2009). [CrossRef] [PubMed]
  20. H. A. Macleod, Thin-Film Optical Filters (Institute of Physics Publishing, 2001)
  21. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998). [CrossRef]
  22. G. Yang, D. Guan, W. Wang, W. Wu, and Z. Chen, “The inherent optical nonlinearities of thin silver films,” Opt. Mater. 25(4), 439–443 (2004). [CrossRef]
  23. P. Yeh, Optical Waves in Layered Media (Wiley, 1988)
  24. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, 1985)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited