OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7488–7496

Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes

Kwang-Hyon Kim, Anton Husakou, and Joachim Herrmann  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 7488-7496 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (354 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the effective linear and nonlinear optical parameters of composites containing noble metal nanoparticles and their dependence on the shape and size of the particles. Our numerical approach is based on the effective medium approximation combined with discrete dipole approximation, which results in a fast and accurate numerical method. The results demonstrate the possibility to achieve large enhancements of the linear and nonlinear optical parameters by tuning the plasmon resonance to a desired frequency by changing the size and the shape of the nanoparticles.

© 2010 OSA

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

Original Manuscript: December 21, 2009
Revised Manuscript: March 5, 2010
Manuscript Accepted: March 5, 2010
Published: March 26, 2010

Kwang-Hyon Kim, Anton Husakou, and Joachim Herrmann, "Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes," Opt. Express 18, 7488-7496 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and applications (Springer Verlag, Berlin, 2007).
  2. J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008). [CrossRef]
  3. M. Pelton, J. Aizpurua, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2(3), 136–159 (2008). [CrossRef]
  4. S. M. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  5. S.-C. Kim, J.-H. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008). [CrossRef] [PubMed]
  6. C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007). [CrossRef] [PubMed]
  7. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  8. R. Driben, A. Husakou, and J. Herrmann, “Supercontinuum generation in aqueous colloids containing silver nanoparticles,” Opt. Lett. 34(14), 2132–2134 (2009). [CrossRef] [PubMed]
  9. R. Driben, A. Husakou, and J. Herrmann, “Low-threshold supercontinuum generation in glasses doped with silver nanoparticles,” Opt. Express 17(20), 17989–17995 (2009). [CrossRef] [PubMed]
  10. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  11. N. Okada, Y. Hamanaka, A. Nakamura, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Linear and nonlinear optical response of silver nanoprisms: local electric fields of dipole and quadrupole plasmon resonances,” J. Phys. Chem. B 108(26), 8751–8755 (2004). [CrossRef]
  12. H. C. van de Hulst, Light Scattering by Small Particles (John Wiley, New York, 1957), Chapters 9 and 10.
  13. F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quantum. Spectrosc. Radiat. Transf. 79–80, 775–824 (2003). [CrossRef]
  14. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994). [CrossRef]
  15. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  16. J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discrete-dipole approximation,” Opt. Lett. 16(15), 1198–1200 (1991). [CrossRef] [PubMed]
  17. T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999). [CrossRef]
  18. M. A. Yurkin, and A. G. Hoestra, “The discrete dipole approximation: an overview and recent developments,” http://arxiv.org/ftp /arxiv/papers/0704/0704.0038.pdf .
  19. W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103(3), 869–875 (1995). [CrossRef]
  20. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004). [CrossRef] [PubMed]
  21. D. C. Kohlgraf-Owens and P. G. Kik, “Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays,” Opt. Express 17(17), 15032–15042 (2009). [CrossRef] [PubMed]
  22. D. C. Kohlgraf-Owens and P. G. Kik, “Numerical study of surface plasmon enhanced nonlinear absorption and refraction,” Opt. Express 16(14), 10823–10834 (2008). [CrossRef] [PubMed]
  23. Y. R. Shen, The principles of nonlinear optics (John Wiley, New York, 1984), Chap. 2.
  24. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992). [CrossRef] [PubMed]
  25. J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431(3), 87–172 (2006). [CrossRef]
  26. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and Metal colloids: the case of gold,” Appl. Phys. (Berl.) 47, 347–357 (1988).
  27. E. L. Falcão-Filho, C. B. de Araujo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24(12), 2948–2956 (2007). [CrossRef]
  28. E. L. Falcao-Filho and C. B. de Araujo, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005). [CrossRef]
  29. K. Tanabe, “Field Enhancement around Metal Nanoparticles and Nanoshells: A systematic Investigation,” J. Phys. Chem. C 112(40), 15721–15728 (2008). [CrossRef]
  30. D. Stroud and P. M. Hui, “Nonlinear susceptibilities of granular matter,” Phys. Rev. B 37(15), 8719–8724 (1988). [CrossRef]
  31. D. Stroud, “The effective medium approximations: Some recent developments,” Superlattices Microstruct. 23(3-4), 567–573 (1998). [CrossRef]
  32. W. David, Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed., (Academic, Orlando, Fla., 1985).
  33. Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited