OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7506–7520

Coherent beam transformations using multimode waveguides

X. Zhu, A. Schülzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 7506-7520 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (592 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Physical insights and characteristics of beam transformations based on multimode interference (MMI) in multimode waveguides are illuminated and analyzed. Our calculations show that, utilizing a short piece of cylindrical multimode waveguide, an input Gaussian beam can be readily transformed to frequently desired beams including top-hat, donut-shaped, taper-shaped, and Bessel-like beams in the Fresnel or the Fraunhofer diffraction range, or even in both ranges. This is a consequence of diffractive propagation of the field exiting the waveguide. The performance of the beam shaper based on MMI can be controlled via tailoring the dimensions of the multimode waveguide or changing the signal wavelength. This beam shaping technique is investigated experimentally using monolithic fiber devices consisting of a short piece of multimode fiber (~ 10 mm long) and a single-mode signal delivery fiber.

© 2010 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(130.2790) Integrated optics : Guided waves
(260.1960) Physical optics : Diffraction theory
(260.3160) Physical optics : Interference
(350.5500) Other areas of optics : Propagation
(350.6980) Other areas of optics : Transforms
(110.2945) Imaging systems : Illumination design

ToC Category:
Physical Optics

Original Manuscript: December 7, 2009
Revised Manuscript: February 23, 2010
Manuscript Accepted: February 28, 2010
Published: March 26, 2010

X. Zhu, A. Schülzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, "Coherent beam transformations using multimode waveguides," Opt. Express 18, 7506-7520 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Dickey and S. Holswade, eds., Laser Beam Shaping: Theory and Techniques (New York: Marcel Dekker, 2000).
  2. F. Dickey, D. Shealy, and S. Holswade, eds., Laser Beam Shaping Applications (New York: Marcel Dekker, 2005).
  3. Y. Matsuura, M. Miyagi, A. German, L. Nagli, and A. Katzir, “Silver-halide fiber tip as a beam homogenizer for infrared hollow waveguides,” Opt. Lett. 22(17), 1308–1310 (1997). [CrossRef]
  4. Y. Matsuura, D. Akiyama, and M. Miyagi, “Beam homogenizer for hollow-fiber delivery system of excimer laser light,” Appl. Opt. 42(18), 3505–3508 (2003). [CrossRef] [PubMed]
  5. J. R. Hayes, J. C. Flanagan, T. M. Monro, D. J. Richardson, P. Grunewald, and R. Allott, “Square core jacketed air-clad fiber,” Opt. Express 14(22), 10345–10350 (2006). [CrossRef] [PubMed]
  6. X. Gu, W. Mohammed, L. Qian, and P. W. E. Smith, “All-fiber laser beam shaping using a long-period grating,” IEEE Photon. Technol. Lett. 20(13), 1130–1132 (2008). [CrossRef]
  7. Z. Tian, M. Nix, and S. S.-H. Yam, “Laser beam shaping using a single-mode fiber abrupt taper,” Opt. Lett. 34(3), 229–231 (2009). [CrossRef] [PubMed]
  8. Y. O. Yilmaz, A. Mehta, W. S. Mohammed, and E. G. Johnson, “Fiber-optic beam shaper based on multimode interference,” Opt. Lett. 32(21), 3170–3172 (2007). [CrossRef] [PubMed]
  9. X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, “Generation of controllable nondiffracting beams using multimode optical fibers,” Appl. Phys. Lett. 94(20), 201102 (2009). [CrossRef]
  10. X. Zhu, A. Schülzgen, H. Li, L. Li, L. Han, J. V. Moloney, and N. Peyghambarian, “Detailed investigation of self-imaging in large-core multimode optical fibers for application in fiber lasers and amplifiers,” Opt. Express 16(21), 16632–16645 (2008). [PubMed]
  11. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22(2), 469–477 (2004). [CrossRef]
  12. A. Mehta, W. S. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15(8), 1129–1131 (2003). [CrossRef]
  13. R. Selvas, I. Torres-Gomez, A. Martinez-Rios, J. A. Alvarez-Chavez, D. A. May-Arrioja, P. Likamwa, A. Mehta, and E. G. Johnson, “Wavelength tuning of fiber lasers using multimode interference effects,” Opt. Express 13(23), 9439–9445 (2005). [CrossRef] [PubMed]
  14. X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33(9), 908–910 (2008). [CrossRef] [PubMed]
  15. X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15(1), 71–78 (2009). [CrossRef]
  16. X. Zhu, “Multimode interference in optical fibers and its applications in fiber lasers and amplifiers,” Phd’s dissertation, University of Arizona (2008).
  17. E. Sziklas and A. Siegman, “Diffraction calculations using fast Fourier transform methods,” Proc. IEEE 62(3), 410–412 (1974). [CrossRef]
  18. H. Li, M. Brio, L. Li, A. Schülzgen, N. Peyghambarian, and J. V. Moloney, “Multimode interference in circular step-index fibers studies with the mode expansion approach,” J. Opt. Soc. Am. B 24(10), 2707 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited