OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7528–7542

Universal scaling of local plasmons in chains of metal spheres

Matthew D. Arnold, Martin G. Blaber, Michael J. Ford, and Nadine Harris  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 7528-7542 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (345 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The position, width, extinction, and electric field of localized plasmon modes in closely-coupled linear chains of small spheres are investigated. A dipole-like model is presented that separates the universal geometric factors from the specific metal permittivity. An electrostatic surface integral method is used to deduce universal parameters that are confirmed against results for different metals (bulk experimental Ag, Au, Al, K) calculated using retarded vector spherical harmonics and finite elements. The mode permittivity change decays to an asymptote with the number of particles in the chain, and changes dramatically from 1/f3 to 1/f1/2 as the gap fraction (ratio of gap between spheres to their diameter), f, gets smaller. Scattering increases significantly with closer coupling. The mode sharpness, strength and electric field for weakly retarded calculations are consistent with electrostatic predictions once the effect of radiative damping is accounted for.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: January 8, 2010
Revised Manuscript: March 19, 2010
Manuscript Accepted: March 23, 2010
Published: March 26, 2010

Matthew D. Arnold, Martin G. Blaber, Michael J. Ford, and Nadine Harris, "Universal scaling of local plasmons in chains of metal spheres," Opt. Express 18, 7528-7542 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag, 1995).
  2. P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007). [CrossRef]
  3. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003). [CrossRef]
  4. J. M. McMahon, A.-I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009). [CrossRef] [PubMed]
  5. C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009). [CrossRef]
  6. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009). [CrossRef] [PubMed]
  7. D. Langbein, “Theory of Van der Waals attraction,” in Springer Tracts in Modern Physics (Springer, 1974), pp. 1–139.
  8. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R 16356–R16359, 16359 (2000). [CrossRef]
  9. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002). [CrossRef]
  10. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002). [CrossRef]
  11. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006). [CrossRef] [PubMed]
  12. N. Harris, M. D. Arnold, M. G. Blaber, and M. J. Ford, “Plasmonic resonances of closely coupled gold nanosphere chains,” J. Phys. Chem. C 113(7), 2784–2791 (2009). [CrossRef]
  13. S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69(12), 125418 (2004). [CrossRef]
  14. S. L. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths,” Nanotechnology 17(11), 2813–2820 (2006). [CrossRef]
  15. F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112(46), 17983–17987 (2008). [CrossRef]
  16. M. D. Arnold and M. G. Blaber, “Optical performance and metallic absorption in nanoplasmonic systems,” Opt. Express 17(5), 3835–3847 (2009). [CrossRef] [PubMed]
  17. T. Hagihara, Y. Hayashiuchi, and T. Okada, “Photoplastic effects in colored KCl single crystals containing potassium metal colloids. I. Preparation of specimens enriched with potassium metal colloids,” Memoirs of Osaka Kyoiku University. Ser. 3. Natural Science and Applied Science 46, 49–56 (1997).
  18. J. H. Weaver and H. P. R. Frederikse, Optical properties of selected elements, 82 ed. (CRC Press, 2001).
  19. D. W. Mackowski, “Calculation of Total Cross-Sections of Multiple-Sphere Clusters,” J. Opt. Soc. Am. A 11(11), 2851–2861 (1994). [CrossRef]
  20. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13(11), 2266–2278 (1996). [CrossRef]
  21. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008). [CrossRef] [PubMed]
  22. R. Fuchs, “Theory of optical properties of ionic-crystal cubes,” Phys. Rev. B 11(4), 1732–1740 (1975). [CrossRef]
  23. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 2004).
  24. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer, 1988).
  25. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 558–589 (2007). [CrossRef]
  26. V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40(11), 2281–2291 (1993). [CrossRef]
  27. B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebtsov, “Absorption and scattering of light by a dimer of metal nanospheres: comparison of dipole and multipole approaches,” Nanotechnology 17(5), 1437–1445 (2006). [CrossRef]
  28. T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009). [CrossRef]
  29. R. L. Chern, X. X. Liu, and C. C. Chang, “Particle plasmons of metal nanospheres: application of multiple scattering approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1), 016609 (2007). [CrossRef] [PubMed]
  30. W. Y. Chien and T. Szkopek, “Multiple-multipole simulation of optical nearfields in discrete metal nanosphere assemblies,” Opt. Express 16(3), 1820–1835 (2008). [CrossRef] [PubMed]
  31. N. A. Nicorovici, R. C. McPhedran, and B. Ke-Da, “Propagation of electromagnetic waves in periodic lattices of spheres: Green’s function and lattice sums,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51(1), 690–702 (1995). [CrossRef] [PubMed]
  32. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited