OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7543–7553

Synthesis and luminescent properties of CaTiO3: Pr3+ microfibers prepared by electrospinning method

Chong Peng, Zhiyao Hou, Cuimiao Zhang, Guogang Li, Hongzhou Lian, Ziyong Cheng, and Jun Lin  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 7543-7553 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (11291 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One-dimensional Pr3+-doped CaTiO3 microfibers were fabricated by a simple and cost-effective electronspinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential analysis (TG-DTA), scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), quantum efficiency (QE), and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. Under ultraviolet excitation and low-voltage electron beams (1-3 kV) excitation, the CaTiO3:x Pr3+ samples show the red emission at 612 nm, corresponding to 1D2-3H4 transition of Pr3+. The luminescence intensity, quantum efficiency, and the lifetime have been studied as a function of the doping concentration of Pr3+ in the CaTiO3 samples.

© 2010 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4760) Materials : Optical properties
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:

Original Manuscript: January 20, 2010
Revised Manuscript: March 12, 2010
Manuscript Accepted: March 14, 2010
Published: March 26, 2010

Chong Peng, Zhiyao Hou, Cuimiao Zhang, Guogang Li, Hongzhou Lian, Ziyong Cheng, and Jun Lin, "Synthesis and luminescent properties of CaTiO3: Pr3+ microfibers prepared by electrospinning method," Opt. Express 18, 7543-7553 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Vecht, D. Smith, S. Chadha, C. Gibbons, J. Koh, and D. Morton, “New electron excited light emitting materials,” J. Vac. Sci. Technol. B 12(2), 781–784 (1994). [CrossRef]
  2. X. Liu, P. Jia, J. Lin, and G. Li, “Monodisperse spherical core-shell structured SiO2–CaTiO3: Pr3+ phosphors for field emission displays,” J. Appl. Phys. 99(12), 124902 (2006). [CrossRef]
  3. P. Holloway, T. Trottier, J. Sebastian, S. Jones, X. Zhang, J. Bang, B. Abrams, W. Thomes, and T. Kim, “Degradation of field emission display phosphors,” J. Appl. Phys. 88(1), 483 (2000). [CrossRef]
  4. N. Hirosaki, R. Xie, K. Inoue, T. Sekiguchi, B. Dierre, and K. Tamura, “Blue-emitting AlN: Eu2+ nitride phosphor for field emission displays,” Appl. Phys. Lett. 91(6), 061101 (2007). [CrossRef]
  5. G. Li, C. Li, Z. Hou, C. Peng, Z. Cheng, and J. Lin, “Nanocrystalline LaOCl:Tb(3+)/Sm(3+) as promising phosphors for full-color field-emission displays,” Opt. Lett. 34(24), 3833–3835 (2009). [CrossRef] [PubMed]
  6. L. Wang, X. Liu, Z. Hou, C. Li, P. Yang, Z. Cheng, H. Lian, and J. Lin, “Electrospinning synthesis and luminescence properties of one-dimensional Zn2SiO4: Mn2+ microfibers and microbelts,” J. Phys. Chem. C 112, 18882–18888 (2008).
  7. H. Li, Z. Wang, S. Xu, and J. Hao, “Improved performance of spherical BaWO4: Tb3+ phosphors for field-emission displays,” J. Electrochem. Soc. 156(5), J112 (2009). [CrossRef]
  8. S. Cho, J. Yoo, and J. Lee, “Synthesis and low-voltage characteristics of CaTiO3: Pr3+ luminescent powders,” J. Electrochem. Soc. 143(10), L231 (1996). [CrossRef]
  9. N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, and T. Hanawa, “CaTiO3 coating on titanium for biomaterial application-optimum thickness and tissue response,” J. Biomed. Mater. Res. A 82A(2), 304–315 (2007). [CrossRef]
  10. P. Diallo, P. Boutinaud, R. Mahiou, and J. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status Solidi 160(1), 255–263 (1997) (a). [CrossRef]
  11. H. Takashima, K. Shimada, N. Miura, T. Katsumata, Y. Inaguma, K. Ueda, and M. Itoh, “Low-driving-voltage electroluminescence in perovskite films,” Adv. Mater. 21(36), 3699–3702 (2009). [CrossRef]
  12. T. Li, M. Shen, L. Fang, F. Zheng, and X. Wu, “Effect of Ca deficiencies on the photoluminescence of CaTiO3: Pr3+,” J. Alloy. Comp. 474(1-2), 330–333 (2009). [CrossRef]
  13. B. Yan and K. Zhou, “In situ sol-gel composition of inorganic/organic polymeric hybrid precursors to synthesize red-luminescent CaTiO3: Pr3+ and CaTi0. 5Zr0. 5O3: Pr3+ phosphors,” J. Alloy. Comp. 398(1-2), 165–169 (2005). [CrossRef]
  14. J. Tang, X. Yu, L. Yang, C. Zhou, and X. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3: Pr3+,” Mater. Lett. 60(3), 326–329 (2006). [CrossRef]
  15. R. Yadav, A. F. Khan, A. Yadav, H. Chander, D. Haranath, B. K. Gupta, V. Shanker, and S. Chawla, “Intense red-emitting Y4Al2O9:Eu3+ phosphor with short decay time and high color purity for advanced plasma display panel,” Opt. Express 17(24), 22023–22030 (2009). [CrossRef] [PubMed]
  16. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009). [CrossRef] [PubMed]
  17. W. B. Im, Y. Fourré, S. Brinkley, J. Sonoda, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Substitution of oxygen by fluorine in the GdSr2AlO5:Ce3+ phosphors: Gd1-xSr2+xAlO5-xFx solid solutions for solid state white lighting,” Opt. Express 17(25), 22673–22679 (2009). [CrossRef]
  18. S. Yin, D. Chen, W. Tang, and Y. Yuan, “Synthesis of CaTiO3: Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci. 42(8), 2886–2890 (2007). [CrossRef]
  19. M. Lencka and R. Riman, “Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-earth titanates,” Chem. Mater. 7(1), 18–25 (1995). [CrossRef]
  20. X. F. Yang, I. D. Williams, J. Chen, J. Wang, H. F. Xu, H. M. Konishi, Y. X. Pan, C. L. Liang, and M. M. Wu, “Perovskite hollow cubes: morphological control, three-dimensional twinning and intensely enhanced photoluminescence,” J. Mater. Chem. 18(30), 3543–3546 (2008). [CrossRef]
  21. X. Zhang, J. Zhang, X. Ren, and X. Wang, “The dependence of persistent phosphorescence on annealing temperatures in CaTiO3: Pr3+ nanoparticles prepared by a coprecipitation technique,” J. Solid State Chem. 181(3), 393–398 (2008). [CrossRef]
  22. A. de Figueiredo, V. Longo, S. de Lazaro, V. Mastelaro, F. De Vicente, A. Hernandes, M. Siu Li, J. Varela, and E. Longo, “Blue-green and red photoluminescence in CaTiO3: Sm,” J. Lumin. 126(2), 403–407 (2007). [CrossRef]
  23. R. Caruso, J. Schattka, and A. Greiner, “Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers,” Adv. Mater. 13(20), 1577–1579 (2001). [CrossRef]
  24. E. Wong, P. Sheehan, and C. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277(5334), 1971–1975 (1997). [CrossRef]
  25. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939 (1982). [CrossRef]
  26. A. Formhals, “Process and apparatus for preparing artificial threads,” (US Patents, 1934).
  27. D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?” Adv. Mater. 16(14), 1151–1170 (2004). [CrossRef]
  28. Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, and J. Lin, “Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process,” Langmuir 25(20), 12340–12348 (2009). [CrossRef] [PubMed]
  29. G. Dong, Y. Chi, X. Xiao, X. Liu, B. Qian, Z. Ma, E. Wu, H. Zeng, D. Chen, and J. Qiu, “Fabrication and optical properties of Y2O3: Eu3+ nanofibers prepared by electrospinning,” Opt. Express 17(25), 22514–22519 (2009). [CrossRef]
  30. J. Last, “Infrared-absorption studies on barium titanate and related materials,” Phys. Rev. 105(6), 1740–1750 (1957). [CrossRef]
  31. S. Azhari and M. Diab, “Thermal degradation and stability of poly (4-vinylpyridine) homopolymer and copolymers of 4-vinylpyridine with methyl acrylate,” Polym. Degrad. Stabil. 60(2-3), 253–256 (1998). [CrossRef]
  32. W. Jia, D. Jia, T. Rodriguez, D. Evans, R. Meltzer, and W. Yen, “UV excitation and trapping centers in CaTiO3: Pr3+,” J. Lumin. 119–120, 13–18 (2006). [CrossRef]
  33. P. Boutinaud, E. Pinel, M. Dubois, A. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1-2), 69–80 (2005). [CrossRef]
  34. T. Mazzo, M. Moreira, I. Pinaatti, F. Picon, E. Leite, I. Rosa, J. Varela, L. Perazolli, and E. Longo, “CaTiO3:Eu3+ obtained by microwave assisted hydrothermal method: A photoluminescent approach,” Opt. Mater. (to be published).
  35. T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si- Al glasses prepared by the sol- gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997). [CrossRef]
  36. C. Feldman, “Range of 1-10 kev electrons in solids,” Phys. Rev. 117(2), 455–459 (1960). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited