OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7611–7616

Shear stress mapping in microfluidic devices by optical tweezers

Jing Wu, Daniel Day, and Min Gu  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 7611-7616 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (332 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an optical tweezer sensor for shear stress mapping in microfluidic systems of different internal geometries. The sensor is able to measure the shear stress acting on microspheres of different sizes that model cell based biological operations. Without the need for a spatial modulator or a holographic disk, the sensor allows for direct shear stress detection at arbitrary positions in straight and curved microfluidic devices. Analytical calculations are carried out and compared with the experimental results. It is observed that a decrease in the microsphere size results in an increase in the shear stress the particle experiences.

© 2010 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: March 5, 2010
Manuscript Accepted: March 24, 2010
Published: March 29, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Jing Wu, Daniel Day, and Min Gu, "Shear stress mapping in microfluidic devices by optical tweezers," Opt. Express 18, 7611-7616 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. G. Larson, The structure and rheology of complex fluids (Oxford U. Press, 1998).
  2. A. Sin, S. K. Murthy, A. Revzin, R. G. Tompkins, and M. Toner, “Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes,” Biotechnol. Bioeng. 91(7), 816–826 (2005). [CrossRef] [PubMed]
  3. M. Greiner, P. Carter, B. Korn, and D. Zink, “New approach to complete automation in sizing and quantitation of DNA and proteins by the automated lab-on-a-chip platform from Agilent Technologies,” Nat. Methods 1(1), 87–89 (2004). [CrossRef]
  4. P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006). [CrossRef] [PubMed]
  5. D. Wirtz, “Particle-tracking microrheology of living cells: principles and applications,” Annu Rev Biophys 38(1), 301–326 (2009). [CrossRef] [PubMed]
  6. H. Mao, T. Yang, and P. S. Cremer, “A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements,” J. Am. Chem. Soc. 124(16), 4432–4435 (2002). [CrossRef] [PubMed]
  7. G. Pesce, A. Sasso, and S. Fusco, “Viscosity measurements on micron-size scale using optical tweezers,” Rev. Sci. Instrum. 76(11), 115105 (2005). [CrossRef]
  8. R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt. 9(8), S103–S112 (2007). [CrossRef]
  9. E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007). [CrossRef]
  10. H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. J. Padgett, and J. M. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80(11), 4237–4240 (2008). [CrossRef] [PubMed]
  11. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992). [CrossRef] [PubMed]
  12. W. Chester, D. R. Breach, and I. Proudman, “On the flow past a sphere at low Reynolds number,” J. Fluid Mech. 37(04), 751 (1969). [CrossRef]
  13. Y. Inouye, S. Shoji, H. Furukawa, O. Nakamura, and S. Kawata, “Pico-Newton friction force measurements using a laser-trapped microsphere,” Jpn. J. Appl. Phys. 37(Part 2, No. 6A), L684–L686 (1998). [CrossRef]
  14. C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, and H. Angue Mintsa, “Temperature and particle-size dependent viscosity data for water-based nanofluidics - hysteresis phenomenon,” Int. J. Heat Fluid Flow 28(6), 1492–1506 (2007). [CrossRef]
  15. P. Becher, Encyclopedia of emulsion technology (Marcel Dekker Inc., 1996).
  16. J. V. Green, T. Kniazeva, M. Abedi, D. S. Sokhey, M. E. Taslim, and S. K. Murthy, “Effect of channel geometry on cell adhesion in microfluidic devices,” Lab Chip 9(5), 677–685 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited