OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7625–7633

Subpicosecond optical pulse compression via an integrated nonlinear chirper

Marco Peccianti, Marcello Ferrera, Luca Razzari, Roberto Morandotti, Brent E. Little, Sai T. Chu, and David J. Moss  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 7625-7633 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1966 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic integrated circuits (PICs) capable of ultra-fast, signal processing are recognized as being fundamental for future applications involving ultra-short optical pulse propagation, including the ability to meet the exponentially growing global fiber-optic telecommunications bandwidth demand. Integrated all-optical signal processors would carry substantial benefits in terms of performance, cost, footprint, and energy efficiency. Here, we demonstrate an optical pulse compressor based on an integrated nonlinear chirper, capable of operating on a sub-picosecond (> 1Tb/s) time scale. It is CMOS compatible and based on a 45cm long, high index doped silica glass waveguide we achieve pulse compression at relatively low input peak powers, due to the high nonlinearity and low linear and nonlinear losses of the device. The flexibility of this platform in terms of nonlinearity and dispersion allows the implementation of several compression schemes.

© 2010 OSA

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Nonlinear Optics

Original Manuscript: December 7, 2009
Revised Manuscript: March 11, 2010
Manuscript Accepted: March 23, 2010
Published: March 29, 2010

Marco Peccianti, Marcello Ferrera, Luca Razzari, Roberto Morandotti, Brent E. Little, Sai T. Chu, and David J. Moss, "Subpicosecond optical pulse compression via an integrated nonlinear chirper," Opt. Express 18, 7625-7633 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Nature Photonics Workshop on the Future of Optical Communications, Japan, Oct. 2007, www.nature.com/nphoton/supplements/techconference2007
  2. B. J.Eggleton, S. Radic, and D. J. Moss, Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools, (Academic, 2008).
  3. B. E. Bouma, and G. J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).
  4. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1(2), 139 (1984). [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics, (Academic, 1995).
  6. A. Stabinis, G. Valiulis, and E. Ibragimov, “Effective sum frequency pulse compression in nonlinear crystals,” Opt. Commun. 86(3-4), 301–306 (1991). [CrossRef]
  7. J. Biegert and J.-C. Diels, “Compression of pulses of a few optical cycles through harmonic generation,” J. Opt. Soc. Am. B 18(8), 1218 (2001). [CrossRef]
  8. J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31(12), 1881–1883 (2006). [CrossRef] [PubMed]
  9. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8(5), 289–291 (1983). [CrossRef] [PubMed]
  10. R. Hunsperger, Integrated optics: Technology and Theory, (Springer-Verlag, 1995).
  11. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008). [CrossRef] [PubMed]
  12. K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995). [CrossRef]
  13. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005). [CrossRef]
  14. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005). [CrossRef]
  15. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14(20), 9377 (2006). [CrossRef] [PubMed]
  16. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  17. E. W. Van Stryland, Y. Y. Wu, D. J. Hagan, M. J. Soileau, and K. Mansour, “Optical limiting with semiconductors,” J. Opt. Soc. Am. B 5(9), 1980 (1988). [CrossRef]
  18. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  19. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008). [CrossRef]
  20. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010). [CrossRef]
  21. M. Ohtani and M. Hanabusa, “Silicon nitride ridge-type optical waveguides fabricated on oxidized silicon by laser direct writing,” Appl. Opt. 31(27), 5830 (1992). [CrossRef] [PubMed]
  22. N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional SiN waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004). [CrossRef]
  23. C. A. Barrios, B. Sánchez, K. B. Gylfason, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform,” Opt. Express 15(11), 6846–6856 (2007). [CrossRef] [PubMed]
  24. B. E. Little, “A VLSI photonics platform,” Conference on Optical Fiber Communication 86, 444 (2003).
  25. D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009). [CrossRef] [PubMed]
  26. C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, (Wiley, 1999)
  27. A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. X. Zhao, N. Alic, and S. Radic, “Pedestal-free pulse source for high data rate optical time-division multiplexing based on fiber-optical parametric processes,” IEEE J. Quantum Electron. 45(11), 1325–1330 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited