OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7664–7669

High performance InGaN/GaN nanorod light emitting diode arrays fabricated by nanosphere lithography and chemical mechanical polishing processes

Liang-Yi Chen, Ying-Yuan Huang, Chun-Hsiang Chang, Yu-Hsuan Sun, Yun-Wei Cheng, Min-Yung Ke, Cheng-Pin Chen, and JianJang Huang  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 7664-7669 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (5674 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We fabricated InGaN/GaN nanorod light emitting diode (LED) arrays using nanosphere lithography for nanorod formation, PECVD (plasma enhanced chemical vapor deposition) grown SiO2 layer for sidewall passivation, and chemical mechanical polishing for uniform nanorod contact. The nano-device demonstrates a reverse current 4.77nA at −5V, an ideality factor 7.35, and an optical output intensity 6807mW/cm2 at the injection current density 32A/cm2 (20mA). Moreover, the investigation of the droop effect for such a nanorod LED array reveals that junction heating is responsible for the sharp decrease at the low current.

© 2010 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optical Devices

Original Manuscript: January 25, 2010
Revised Manuscript: March 17, 2010
Manuscript Accepted: March 17, 2010
Published: March 29, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

Liang-Yi Chen, Ying-Yuan Huang, Chun-Hsiang Chang, Yu-Hsuan Sun, Yun-Wei Cheng, Min-Yung Ke, Cheng-Pin Chen, and JianJang Huang, "High performance InGaN/GaN nanorod light emitting diode arrays fabricated by nanosphere lithography and chemical mechanical polishing processes," Opt. Express 18, 7664-7669 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Wu, Z. Hu, X. Wang, Y. Lu, K. Huo, S. Deng, N. Xu, B. Shen, R. Zhang, and Y. Chen, “Extended vapor–liquid–solid growth and field emission properties of aluminium nitride nanowires,” J. Mater. Chem. 13(8), 2024–2027 (2003). [CrossRef]
  2. C. C. Tang, S. S. Fan, M. L. Chapelle, and P. Li, “Silica-assisted catalytic growth of oxide and nitride nanowires,” Chem. Phys. Lett. 333(1-2), 12–15 (2001). [CrossRef]
  3. C. C. Chen and C. C. Yeh, “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires,” Adv. Mater. 12(10), 738–741 (2000). [CrossRef]
  4. H. W. Huang, C. C. Kao, T. H. Hsueh, C. C. Yu, C. F. Lin, J. T. Chu, H. C. Kuo, and S. C. Wang, “Fabrication of GaN-based nanorod light emitting diodes using self-assemble nickel nano-mask and inductively coupled plasma reactive ion etching,” Mater. Sci. Eng. B 113, 125–129 (2004).
  5. C. Y. Wang, L. Y. Chen, C. P. Chen, Y. W. Cheng, M. Y. Ke, M. Y. Hsieh, H. M. Wu, L. H. Peng, and J. J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Opt. Express 14, 10556 (2008).
  6. M. Y. Hsieh, C. Y. Wang, L. Y. Chen, M. Y. Ke, and J. J. Huang, “InGaN–GaN Nanorod Light Emitting Arrays Fabricated by Silica Nanomasks,” IEEE J. Quantum Electron. 44(MAY), (2008). [CrossRef]
  7. Y. J. Lee, S. Y. Lin, C. H. Chiu, T. C. Lu, H. C. Kuo, S. C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009). [CrossRef]
  8. C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007). [CrossRef]
  9. H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays,” Nano Lett. 4(6), 1059–1062 (2004). [CrossRef]
  10. A. Kikuchi, M. Tada, K. Miwa, and K. Kishino, “Growth and characterization of InGaN/GaN nanocolumn LED,” Proc. SPIE 6129, 612905 (2006). [CrossRef]
  11. M. D. Drory, J. W. Ager, T. Suski, I. Grzegory, and S. Porowski, “Hardness and fracture toughness of bulk single crystal gallium nitride,” Appl. Phys. Lett. 69(26), 4044–4046 (1996). [CrossRef]
  12. W. Alexander and J. Shackelford, CRC Materials Science and Engineering Handbook (CRC press, USA 1997) p.474.
  13. C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in p-n junctions and p-n junction characteristics,” Proc. IRE. 45, 1228 (1957).
  14. K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. R. Darvish, P. Kung, and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well,” Appl. Phys. Lett. 84(7), 1046 (2004). [CrossRef]
  15. J. M. Shah, Y.-L. Li, Th. Gessmann, and E. F. Schubert, “Experimental analysis and theoretical model for anomalously high ideality factors (n>>2.0) in AlGaN/GaN p-n junction diodes,” J. Appl. Phys. 94(4), 2627 (2003). [CrossRef]
  16. D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 94(8), 081113 (2009). [CrossRef]
  17. P. Deb, H. Kim, Y. Qin, R. Lahiji, M. Oliver, R. Reifenberger, and T. Sands, “GaN nanorod Schottky and p-n junction diodes,” Nano Lett. 6(12), 2893–2898 (2006). [CrossRef] [PubMed]
  18. A. Motayed, A. V. Davydov, M. D. Vaudin, I. Levin, J. Melngailis, and S. N. Mohammad, “Fabrication of GaN-based nanoscale device structures utilizing focused ion beam induced Pt deposition,” J. Appl. Phys. 100(2), 024306 (2006). [CrossRef]
  19. N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, “The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements,” Nano Lett. 6(4), 704–708 (2006). [CrossRef] [PubMed]
  20. H. J. Chang, Y. P. Hsieh, T. T. Chen, Y. F. Chen, C.-T. Liang, T. Y. Lin, S. C. Tseng, and L. C. Chen, “Strong luminescence from strain relaxed InGaN/GaN nanotips for highly efficient light emitters,” Opt. Express 15(15), 9357–9365 (2007). [CrossRef] [PubMed]
  21. Y. R. Wu, C. H. Chiu, C. Y. Chang, P. Yu, and H. C. Kuo, “Size-Dependent Strain Relaxation and Optical Characteristics of InGaN/GaN Nanorod LEDs Mechanism of strain relaxation by twisted nanocolumns revealed in AlGaN/GaN heterostructures,” IEEE J. Sel. Top. Quantum Electron. 15, (2009).
  22. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007). [CrossRef]
  23. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007). [CrossRef]
  24. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40(5), 605–610 (2006). [CrossRef]
  25. H. S. Chen, D. M. Yeh, Y. C. Lu, C. Y. Chen, C. F. Huang, T. Y. Tang, C. C. Yang, C. S. Wu, and C. D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited