OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7685–7692

Band-edge lasers based on randomly mixed photonic crystals

Sunghwan Kim, Sungjoon Yoon, Hyojun Seok, Jeongkug Lee, and Heonsu Jeon  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 7685-7692 (2010)
http://dx.doi.org/10.1364/OE.18.007685


View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By employing two-dimensional InGaAsP photonic band-edge lasers, we have experimentally demonstrated that a random mixture of two different photonic crystals (PCs) possesses a new band structure that is intermediate to that of the two host PCs. The photonic band-edges shift monotonically, but with a strong bowing effect, as the mixed PC system is systematically transformed from one PC to the other. The experimental observations are in excellent agreement with finite-difference time-domain simulations and model calculations based on virtual-crystal approximation with compositional disorder effect included.

© 2010 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(160.5298) Materials : Photonic crystals
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 19, 2010
Revised Manuscript: March 22, 2010
Manuscript Accepted: March 25, 2010
Published: March 30, 2010

Citation
Sunghwan Kim, Sungjoon Yoon, Hyojun Seok, Jeongkug Lee, and Heonsu Jeon, "Band-edge lasers based on randomly mixed photonic crystals," Opt. Express 18, 7685-7692 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7685


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Y. Yu and M. Cardona, Fundamentals of semiconductors: physics and materials properties (Springer, Berlin, 2001), Chap. 2.
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  4. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton University Press, Princeton, 2008).
  5. E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78(2), 455–481 (2006). [CrossRef]
  6. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007). [CrossRef] [PubMed]
  7. C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4(10), 794–798 (2008). [CrossRef]
  8. J. H. Gisolf, “The absorption spectrum of luminescent zinc-sulfide and zinc-cadmiumsulfide in connection with some optical, electrical and chemical properties,” Physica 6(1), 84 (1939). [CrossRef]
  9. O. G. Folberth, “Mischkristallbildung Bei Aiii Bv-Verbindungen,” Z. Naturforsch. B 10a, 502 (1955).
  10. S. Larach, R. E. Shrader, and C. F. Stocker, “Anomalous variation of band gap with composition in zinc sulfo- and seleno-tellurides,” Phys. Rev. 108(3), 587–589 (1957). [CrossRef]
  11. F. Capasso, “Band-gap engineering - from physics and materials to new semiconductor-devices,” Science 235(4785), 172–176 (1987). [CrossRef] [PubMed]
  12. Z. I. Alferov and D. Z. Gabruzov, “Recombination radiation spectrum of GaAs with current excitation via p-n heterojunctions of GaP-GaAs,” Sov. Phys. Solid State 7, 1919 (1966).
  13. H. Kroemer, “Theory of a wide-gap emitter for transistors,” Proc. IRE 45, 1535 (1957).
  14. H. J. Kim, Y. G. Roh, and H. Jeon, “Photonic bandgap engineering in mixed colloidal photonic crystals,” Jpn. J. Appl. Phys. 44(40), L1259–L1262 (2005). [CrossRef]
  15. H. J. Kim, D. U. Kim, Y. G. Roh, J. Yu, H. Jeon, and Q. H. Park, “Photonic crystal alloys: a new twist in controlling photonic band structure properties,” Opt. Express 16(9), 6579–6585 (2008). [CrossRef] [PubMed]
  16. S. Nojima, “Optical-gain enhancement in two-dimensional active photonic crystals,” J. Appl. Phys. 90(2), 545 (2001). [CrossRef]
  17. S. Kim, Y. Park, K. Hwang, J. Lee, H. Jeon, and H. J. Kim, “High-power and large-alignment-tolerance fiber coupling of honeycomb-lattice photonic crystal Γ-point band-edge laser,” J. Opt. Soc. Am. B 26(7), 1330 (2009). [CrossRef]
  18. S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009). [CrossRef]
  19. J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett. 39(6), 526–528 (2003). [CrossRef]
  20. A. H. Lettington, D. Jones, and R. Sarginson, “Thermoreflectance studies of thin epitaxially deposited (InGa)P alloys,” J. Phys. C Solid State Phys. 4(12), 1534–1539 (1971). [CrossRef]
  21. S. Bloom, “Bandgap Variation in Quaternary Alloys,” J. Appl. Phys. 41(4), 1864 (1970). [CrossRef]
  22. L. Nordheim, “Zur Elektronentheorie der Metalle. I and II,” Ann. Phys. 401,(5), 607–640 (1931). [CrossRef]
  23. A. Baldereschi and K. Maschke, “Band structure of semiconductor alloys beyond the virtual crystal approximation. effect of compositional disorder on the energy gaps in GaPxAs1-x,” Solid State Commun. 16(1), 99–102 (1975). [CrossRef]
  24. S. J. Lee, T. S. Kwon, K. Nahm, and C. K. Kim, “Band-structure of ternary compound semiconductors beyond the virtual crystal approximation,” J. Phys. Condens. Matter 2(14), 3253–3257 (1990). [CrossRef]
  25. J. A. Van Vechten and T. K. Bergstresser, “Electronic Structures of Semiconductor Alloys,” Phys. Rev. B 1(8), 3351–3358 (1970). [CrossRef]
  26. M. Ferhat and F. Bechstedt, “First-principles calculations of gap bowing in InxGa1-xN and InxAl1-xN alloys: Relation to structural and thermodynamic properties,” Phys. Rev. B 65(7), 075213 (2002). [CrossRef]
  27. L. Vegard, “Die Konstitution der Mischkristalle und die Raumfüllung der Atome,” Z. Phys. 5(1), 17–26 (1921). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited