OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7705–7713

Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission

Matthew J. Kofke, David H. Waldeck, and Gilbert C. Walker  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 7705-7713 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Near infrared transmission of light through subwavelength slit arrays is shown to be significantly influenced by resonant metallic nanoparticles placed within the structure. Experimental and calculated transmission spectra show how the size, orientation of the nanoparticles, and the period of the nanoslit array influence the maximum transmission wavelength, the magnitude of the transmission, and width of the resonance. These findings suggest that the localized surface plasmon resonance (LSPR) of metallic nanoparticles and their subsequent near and far-field interactions can modulate the subwavelength transmission and bandwidth of nanoaperture array devices in optically thick metal films.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: February 26, 2010
Revised Manuscript: March 23, 2010
Manuscript Accepted: March 24, 2010
Published: March 30, 2010

Matthew J. Kofke, David H. Waldeck, and Gilbert C. Walker, "Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission," Opt. Express 18, 7705-7713 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef]
  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  3. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007). [CrossRef] [PubMed]
  4. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998). [CrossRef]
  5. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  7. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays†,” J. Phys. Chem. B 107(30), 7337–7342 (2003). [CrossRef]
  8. P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112(13), 4954–4960 (2008). [CrossRef]
  9. G. C. Schatz, A. A. Lazarides, and K. L. Kelly, “Modeling the extinction spectra of metal nanoparticle chains and arrays,” Abstr Pap Am Chem S 224, U298–U298 (2002).
  10. C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the Use of Plasmonic Nanoparticle Pairs As a Plasmon Ruler: The Dependence of the Near-Field Dipole Plasmon Coupling on Nanoparticle Size and Shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009). [CrossRef]
  11. S. L. Zou, L. L. Hao, N. Janel, and G. C. Schatz, “Extinction spectra of nanoparticle arrays: The influence of size, shape, and interparticle spacing,” Abstr Pap Am Chem S 227, U266–U266 (2004).
  12. S. L. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004). [CrossRef] [PubMed]
  13. S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121(24), 12606–12612 (2004). [CrossRef] [PubMed]
  14. M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, “The optical near-field of gold nanoparticle chains,” Opt. Commun. 248(4-6), 543–549 (2005). [CrossRef]
  15. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef] [PubMed]
  16. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008). [CrossRef]
  17. C. Hägglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008). [CrossRef]
  18. A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005). [CrossRef] [PubMed]
  19. W. P. Hall, J. N. Anker, Y. Lin, J. Modica, M. Mrksich, and R. P. Van Duyne, “A calcium-modulated plasmonic switch,” J. Am. Chem. Soc. 130(18), 5836–5837 (2008). [CrossRef] [PubMed]
  20. J. Ferreira, M. J. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton, and E. M. Girotto, “Attomolar protein detection using in-hole surface plasmon resonance,” J. Am. Chem. Soc. 131(2), 436–437 (2009). [CrossRef] [PubMed]
  21. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009). [CrossRef] [PubMed]
  22. P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007). [CrossRef]
  23. Y. W. Jun, S. Sheikholeslami, D. R. Hostetter, C. Tajon, C. S. Craik, and A. P. Alivisatos, “Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level,” Proc Natl Acad Sci U S A (2009).
  24. M. E. Stewart, J. Yao, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Multispectral Thin Film Biosensing and Quantitative Imaging Using 3D Plasmonic Crystals,” Anal Chem (2009).
  25. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63(3), 033107 (2001). [CrossRef]
  26. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001). [CrossRef] [PubMed]
  27. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002). [CrossRef] [PubMed]
  28. Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express 17(18), 16081–16091 (2009). [CrossRef] [PubMed]
  29. Y. S. Jung, Y. Xi, J. Wuenschell, and H. K. Kim, “Near- to far-field imaging of phase evolution of light emanating from a metal nanoslit,” Opt. Express 16(23), 18881–18882 (2008). [CrossRef]
  30. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, (2005). [CrossRef] [PubMed]
  31. J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE T Nanotechnol 7(2), 229–236 (2008). [CrossRef]
  32. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005). [CrossRef] [PubMed]
  33. B. Wang and P. Lalanne, “How many surface plasmons are locally excited on the ridges of metallic lamellar gratings?” Appl. Phys. Lett. 96(5), 051115–051113 (2010). [CrossRef]
  34. Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88, (2006).
  35. K. L. Lee, C. W. Lee, W. S. Wang, and P. K. Wei, “Sensitive biosensor array using surface plasmon resonance on metallic nanoslits,” J. Biomed. Opt. 12, - (2007). [CrossRef] [PubMed]
  36. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  37. J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticles,” J. Phys. Chem. C 112(11), 4091–4096 (2008). [CrossRef]
  38. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003). [CrossRef]
  39. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005). [CrossRef] [PubMed]
  40. M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009). [CrossRef]
  41. A. Pinchuk and G. Schatz, “Collective surface plasmon resonance coupling in silver nanoshell arrays,” Appl. Phys. B 93(1), 31–38 (2008). [CrossRef]
  42. L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003). [CrossRef]
  43. S. Wu, Q.- Wang, X.- Yin, J.- Li, D. Zhu, S.- Liu, and Y.-y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113–101113 (2008). [CrossRef]
  44. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006). [CrossRef]
  45. B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, (2008). [CrossRef] [PubMed]
  46. J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007). [CrossRef]
  47. A. Bouhelier, R. Bachelot, J. S. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109(8), 3195–3198 (2005). [CrossRef]
  48. M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2(6), 931–949 (1985). [CrossRef]
  49. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000). [CrossRef] [PubMed]
  50. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 4
Fig. 3 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited