OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7732–7742

Wavelength conversion by dynamically reconfiguring a nested photonic crystal cavity

Amin Khorshidahmad and Andrew G. Kirk  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 7732-7742 (2010)
http://dx.doi.org/10.1364/OE.18.007732


View Full Text Article

Enhanced HTML    Acrobat PDF (447 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A dynamically reconfigurable nested photonic crystal cavity suitable for frequency conversion applications is proposed. Dynamic switching between two distinct cavities allows intermodal transition via spatially-uniform tuning of the refractive index. Exclusion of the initial resonant mode from the Eigen modes of the tuned cavity precludes the adiabatic wavelength conversion process. Multiple intermodal transitions are suppressed by the symmetry of the mode profiles of the two cavities. Over 90nm wavelength shift (from L-band to the S-band) is shown numerically.

© 2010 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Photonic Crystals

History
Original Manuscript: November 24, 2009
Revised Manuscript: January 25, 2010
Manuscript Accepted: March 17, 2010
Published: March 30, 2010

Citation
Amin Khorshidahmad and Andrew G. Kirk, "Wavelength conversion by dynamically reconfiguring a nested photonic crystal cavity," Opt. Express 18, 7732-7742 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7732


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” IEEE J. Lightwave Technol. 14(6), 955–966 (1996). [CrossRef]
  2. R. Espinola, J. Dadap, R. Osgood, S. McNab, and Y. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005). [CrossRef] [PubMed]
  3. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007). [CrossRef] [PubMed]
  4. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008). [CrossRef] [PubMed]
  5. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005). [CrossRef]
  6. E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003). [CrossRef] [PubMed]
  7. M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006). [CrossRef]
  8. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004). [CrossRef] [PubMed]
  9. S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007). [CrossRef]
  10. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  11. A. Khorshidahmad, and A. G. Kirk, “Nested photonic crystal cavity for on-chip wavelength conversion,” in Proceedings of IEEE/LEOS Winter Topicals Meeting Series 2009 (IEEE,2009), 60–61.
  12. J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, “Interband transitions in photonic crystals,” Phys. Rev. B 59(3), 1551–1554 (1999). [CrossRef]
  13. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009). [CrossRef]
  14. P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson, “Inducing photonic transitions between discrete modes in a silicon optical microcavity,” Phys. Rev. Lett. 100(3), 033904 (2008). [CrossRef] [PubMed]
  15. A. Khorshidahmad and A. G. Kirk, “Wavelength conversion by interband transition in a double heterostructure photonic crystal cavity,” Opt. Lett. 34(19), 3035–3037 (2009). [CrossRef] [PubMed]
  16. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  17. A. Mock, L. Lu, and J. D. O’Brien, “Spectral properties of photonic crystal double heterostructure resonant cavities,” Opt. Express 16(13), 9391–9397 (2008). [CrossRef] [PubMed]
  18. Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “Higher-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008). [CrossRef]
  19. S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide,” Opt. Express 16(7), 4605–4614 (2008). [CrossRef] [PubMed]
  20. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81(7), 1163–1165 (2002). [CrossRef]
  21. Z. Qiang and W. Zhou, “Fast calculation of cavity-mode characteristics of photonic crystal cavities,” IEEE Photon. Technol. Lett. 18(18), 1940–1942 (2006). [CrossRef]
  22. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007). [CrossRef] [PubMed]
  23. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007). [CrossRef] [PubMed]
  24. J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic wavelength conversion of an optical pulse traveling in a 2D photonic crystal waveguide,” in Proceedings of the 20th Annual Meeting of the IEEE/LEOS (IEEE, 2007), pp. 349–350.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited