OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7743–7752

Magnetic field modulation of intense surface plasmon polaritons

C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 7743-7752 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1027 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present correlated experimental and theoretical studies on the magnetic field modulation of Surface Plasmon Polaritons (SPPs) in Au/Co/Au trilayers. The trilayers were grown by sputter deposition on glass slides with the Co films placed at different distances from the surface and with different thickness. We show that it is possible to tailor Au/Co/Au trilayers with the critical thickness needed for optimum excitation of SPPs leading to large localized electromagnetic fields. The modification of the SPP wave vector by externally applied magnetic fields was investigated by measuring the magneto-optical activity in transverse configuration. In addition, using magneto-optics as a tool we determined the spatial distribution of the SPP generated electromagnetic fields within Au/Co/Au samples by analyzing the field-dependent optical response, demonstrating that it is possible to excite SPPs that exhibit large electromagnetic fields that are also magneto-optically active and therefore can be modulated by externally applied magnetic fields.

© 2010 OSA

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(230.3810) Optical devices : Magneto-optic systems
(240.6680) Optics at surfaces : Surface plasmons
(310.4165) Thin films : Multilayer design
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: December 18, 2009
Revised Manuscript: February 28, 2010
Manuscript Accepted: March 6, 2010
Published: March 30, 2010

C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, "Magnetic field modulation of intense surface plasmon polaritons," Opt. Express 18, 7743-7752 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).
  2. S. S. Y. J. Homola and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1-2), 3–15 (1999). [CrossRef]
  3. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004). [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  5. Y. M. Strelniker and D. J. Bergman, “Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field,” Phys. Rev. B 59(20), R12763–R12766 (1999). [CrossRef]
  6. G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. Le Guyader, A. Kirilyuk, T. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” N. J. Phys. 10(10), 105012 (2008). [CrossRef]
  7. Y.-C. Lan, Y.-C. Chang, and P.-H. Lee, “Manipulation of tunneling frequencies using magnetic fields for resonant tunneling effects of surface plasmons,” Appl. Phys. Lett. 90(17), 171114 (2007). [CrossRef]
  8. K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004). [CrossRef]
  9. J. B. Khurgin, “Optical isolating action in surface plasmon polaritons,” Appl. Phys. Lett. 89(25), 251115 (2006). [CrossRef]
  10. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006). [CrossRef] [PubMed]
  11. M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B 36(11), 5960–5967 (1987). [CrossRef]
  12. P. E. Ferguson, O. M. Stafsudd, and R. F. Wallis, “Surface magnetoplasma waves in nickel,” Physica B+C 86–88, 1403–1405 (1977).
  13. P. E. Ferguson, O. M. Stafsudd, and R. F. Wallis, “Enhancement of the transverse Kerr magneto-optic effect by surface magnetoplasma waves,” Physica B+C 89, 91–94 (1977). [CrossRef]
  14. R. K. Hickernell and D. Sarid, “Long-range surface magnetoplasmons in thin nickel films,” Opt. Lett. 12(8), 570–572 (1987). [CrossRef] [PubMed]
  15. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986). [CrossRef]
  16. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005). [CrossRef]
  17. C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64(23), 235422 (2001). [CrossRef]
  18. J. B. González-Díaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007). [CrossRef]
  19. V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marlière, “Magneto-optical Effects Enhanced by Surface Plasmons in Metallic Multilayer Films,” Phys. Rev. Lett. 73(26), 3584–3587 (1994). [CrossRef] [PubMed]
  20. N. Bonod, R. Reinisch, E. Popov, and M. Nevière, “Optimization of surface-plasmon-enhanced magneto-optical effects,” J. Opt. Soc. Am. B 21(4), 791–797 (2004). [CrossRef]
  21. D. P. Kumah, A. Cebollada, C. Clavero, J. M. Garcia-Martin, J. R. Skuza, R. A. Lukaszew, and R. Clarke, “Optimizing the planar structure of (111) Au/Co/Au trilayers,” J. Phys. D Appl. Phys. 40(9), 2699–2704 (2007). [CrossRef]
  22. M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53(8), 4265–4274 (1996). [CrossRef]
  23. M. Schubert, T. E. Tiwald, and J. A. Woollam, “Explicit Solutions for the Optical Properties of Arbitrary Magneto-Optic Materials in Generalized Ellipsometry,” Appl. Opt. 38(1), 177–187 (1999). [CrossRef]
  24. E. D. Palik, “Handbook of optical constants of solids”, Academic Press, Orlando (1985).
  25. S. Park, X. Zhang, A. Misra, J. D. Thompson, M. R. Fitzsimmons, S. Lee, and C. M. Falco, “Tunable magnetic anisotropy of ultrathin Co layers,” Appl. Phys. Lett. 86(4), 042504 (2005). [CrossRef]
  26. D. Weller, J. Stöhr, R. Nakajima, A. Carl, M. G. Samant, C. Chappert, R. Mégy, P. Beauvillain, P. Veillet, and G. A. Held, “Microscopic origin of magnetic anisotropy in Au/Co/Au probed with x-ray magnetic circular dichroism,” Phys. Rev. Lett. 75(20), 3752–3755 (1995). [CrossRef] [PubMed]
  27. T. Koide, H. Miyauchi, J. Okamoto, T. Shidara, A. Fujimori, H. Fukutani, K. Amemiya, H. Takeshita, S. Yuasa, T. Katayama, and Y. Suzuki, “Direct determination of interfacial magnetic moments with a magnetic phase transition in Co nanoclusters on Au(111),” Phys. Rev. Lett. 87(25), 257201 (2001). [CrossRef] [PubMed]
  28. P. Bertrand, C. Hermann, G. Lampel, J. Peretti, and V. I. Safarov, “General analytical treatment of optics in layered structures: Application to magneto-optics,” Phys. Rev. B 64(23), 235421 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited