OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7763–7769

Suspended optical fiber-to-waveguide mode size converter for Silicon photonics

Qing Fang, Tsung-Yang Liow, Jun Feng Song, Chee Wei Tan, Ming Bin Yu, Guo Qiang Lo, and Dim-Lee Kwong  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 7763-7769 (2010)
http://dx.doi.org/10.1364/OE.18.007763


View Full Text Article

Enhanced HTML    Acrobat PDF (730 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, an efficient and novel optical fiber-to-waveguide mode size converter for Si Photonics devices with sub-micron waveguides is developed on the SOI platform. This optical converter is composed of a suspended SiO2 waveguide and overlapped Si nano-tapers located in the center of suspended SiO2 waveguide. Laterally connected SiO2 beams provide structural support for the suspended SiO2 waveguide. The optical input signal from the optical fiber is launched into the suspended SiO2 waveguide, and then coupled into the Si nano-taper. The measured coupling loss using a lensed fiber with 5 µm spot diameter is 1.7 ~2.0 dB/facet for TE mode and 2.0 ~2.4 dB/facet for TM mode in the wavelength range of 1520 ~1600 nm. When a cleaved fiber with 9.2µm spot diameter is used, the coupling losses for both TE and TM modes are less than 4.0 dB/facet at 1550 nm. For the case of lensed fiber, the alignment tolerances for both TE and TM modes are about ± 1.7 µm for 1 dB excess loss in both X and Y axes. The alignment tolerances for both modes of TE and TM are relaxed, exceeding ± 2.5 µm for 1 dB excess loss in both X and Y axes when a cleaved fiber is used.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Integrated Optics

History
Original Manuscript: January 6, 2010
Revised Manuscript: February 25, 2010
Manuscript Accepted: February 26, 2010
Published: March 30, 2010

Citation
Qing Fang, Tsung-Yang Liow, Jun Feng Song, Chee Wei Tan, Ming Bin Yu, Guo Qiang Lo, and Dim-Lee Kwong, "Suspended optical fiber-to-waveguide mode size converter for silicon photonics," Opt. Express 18, 7763-7769 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7763


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004). [CrossRef]
  2. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and G. R. Baets, “Compact wavelength-selective functions in Silicon-on-Insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006). [CrossRef]
  3. Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~ 6.45 dB/cm) sub-micro polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16(9), 6425–6432 (2008). [CrossRef] [PubMed]
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  5. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007). [CrossRef] [PubMed]
  6. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  7. J. B. You, M. Park, J. W. Park, and G. Kim, “12.5 Gbps optical modulation of silicon racetrack resonator based on carrier-depletion in asymmetric p-n diode,” Opt. Express 16(22), 18340–18344 (2008). [CrossRef] [PubMed]
  8. T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility and Performance Optimization,” IEEE J. Sel. Top. Quantum Electron. (Article In Press).
  9. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007). [CrossRef] [PubMed]
  10. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009). [CrossRef] [PubMed]
  11. D. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007). [CrossRef] [PubMed]
  12. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005). [CrossRef] [PubMed]
  13. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005). [CrossRef] [PubMed]
  14. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 14, 4261–4268 (2004).
  15. J. F. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16(20), 15304–15311 (2008). [CrossRef] [PubMed]
  16. Q. Fang, J. F. Song, G. Zhang, M. B. Yu, Y. L. Liu, G. Q. Lo, and D. L. Kwong, “Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform,” IEEE Photon. Technol. Lett. 21(5), 319–321 (2009). [CrossRef]
  17. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006). [CrossRef]
  18. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  19. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38(25), 1669–1670 (2002). [CrossRef]
  20. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005). [CrossRef]
  21. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for Silicon-on-Insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007). [CrossRef]
  22. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007). [CrossRef]
  23. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-µm CMOS SOI technology,” IEEE J. Solid-state Circuits 41(12), 2945–2955 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited