OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7770–7781

Optical signal processing on a silicon chip at 640Gb/s using slow-light

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 7770-7781 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (964 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate optical performance monitoring of in-band optical signal to noise ratio (OSNR) and residual dispersion, at bit rates of 40Gb/s, 160Gb/s and 640Gb/s, using slow-light enhanced optical third harmonic generation (THG) in a compact (80µm) dispersion engineered 2D silicon photonic crystal waveguide. We show that there is no intrinsic degradation in the enhancement of the signal processing at 640Gb/s relative to that at 40Gb/s, and that this device should operate well above 1Tb/s. This work represents a record 16-fold increase in processing speed for a silicon device, and opens the door for slow light to play a key role in ultra-high bandwidth telecommunications systems.

© 2010 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(130.2755) Integrated optics : Glass waveguides
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Integrated Optics

Original Manuscript: January 12, 2010
Revised Manuscript: March 17, 2010
Manuscript Accepted: March 19, 2010
Published: March 30, 2010

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, "Optical signal processing on a silicon chip at 640Gb/s using slow-light," Opt. Express 18, 7770-7781 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Nature Photonics Workshop on the Future of Optical Communications; Tokyo, Oct. 2007. www.nature.com/nphoton/supplements/techconference2007
  2. B. J. Eggleton, D. J. Moss, and S. Radic, Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools Ch. 20 (Academic Press, Oxford, 2008).
  3. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008). [CrossRef]
  4. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009). [CrossRef]
  5. V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14(23), 11242–11247 (2006). [CrossRef] [PubMed]
  6. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008). [CrossRef] [PubMed]
  7. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002). [CrossRef]
  8. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009). [CrossRef] [PubMed]
  9. B. Metcalfe, Toward Terabit Ethernet, Plenary Talk, Optical Fiber Communications 2008, see www.ofcnfoec.org/conference_program/Plenary-video.aspx and www.lightreading.com/tv/tv_popup.asp?doc_id=146223 .
  10. E. Dulkeith, Y. A. Vlasov, X. G. Chen, N. C. Panoiu, and R. M. Osgood., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14(12), 5524–5534 (2006). [CrossRef] [PubMed]
  11. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009). [CrossRef]
  12. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. B. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008). [CrossRef] [PubMed]
  13. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007). [CrossRef]
  14. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002). [CrossRef] [PubMed]
  15. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005). [CrossRef]
  16. M. L. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008). [CrossRef]
  17. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008). [CrossRef] [PubMed]
  18. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004). [CrossRef] [PubMed]
  19. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010). [CrossRef]
  20. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008). [CrossRef]
  21. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  22. M. Soljačić, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002). [CrossRef]
  23. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  24. T. F. Krauss, ““Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007). [CrossRef]
  25. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008). [CrossRef] [PubMed]
  26. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006). [CrossRef] [PubMed]
  27. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32(20), 2981–2983 (2007). [CrossRef] [PubMed]
  28. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009). [CrossRef] [PubMed]
  29. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O¿Faolain, and T. F. Krauss, “Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides,” IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010). [CrossRef]
  30. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009). [CrossRef] [PubMed]
  31. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express 17(9), 7206–7216 (2009). [CrossRef] [PubMed]
  32. A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009). [CrossRef] [PubMed]
  33. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009). [CrossRef]
  34. M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17(20), 18340–18353 (2009). [CrossRef] [PubMed]
  35. J. F. McMillan, X. D. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31(9), 1235–1237 (2006). [CrossRef] [PubMed]
  36. L. O’Faolain, J. Li, T. P. White, A.Gomez-Iglesias, and T.F.Krauss, “Low Loss Dispersion Engineered Photonic Crystal Waveguides for Optical Delay Lines,” Group IV Photonics proceedings, pg 40 (2009).
  37. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008). [CrossRef] [PubMed]
  38. S. Wielandy, M. Fishteyn, and B. Y. Zhu, “Optical performance monitoring using nonlinear detection,” IEEE J. Lightwave Technol. 22(3), 784–793 (2004). [CrossRef]
  39. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, A. Preiss, and A. E. Willner, “Optical performance monitoring,” IEEE J. Lightwave Technol. 22(1), 294–304 (2004). [CrossRef]
  40. Z. Pan, Z. Yu, and A. Willner, “Optical performance monitoring for next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010). [CrossRef]
  41. T. T. Ng, J. L. Blows, M. Rochette, J. A. Bolger, I. Littler, and B. J. Eggleton, “In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Opt. Express 13(14), 5542–5552 (2005). [CrossRef] [PubMed]
  42. L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation,” J. Lightwave Technol. 20(12), 2136–2144 (2002). [CrossRef]
  43. B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(8), 1022–1024 (2000). [CrossRef]
  44. J. H. Lee, H. Y. Choi, S. K. Shin, and Y. C. Chung, “A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks,” IEEE J. Lightwave Technol. 24(11), 4162–4171 (2006). [CrossRef]
  45. T. B. Anderson, A. Kowalczyk, K. Clarke, S. Dods, D. Hewitt, and J. C. Li, “Multi impairment monitoring for optical networks,” IEEE J. Lightwave Technol. 27(16), 3729–3736 (2009). [CrossRef]
  46. T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: Application to residual dispersion monitoring,” IEEE J. Lightwave Technol. 23(2), 818–826 (2005). [CrossRef]
  47. T. T. Ng, J. L. Blows, and B. J. Eggleton, “In-band OSNR monitoring using fibre optical parametric amplifier,” Electron. Lett. 41(6), 352–353 (2005). [CrossRef]
  48. P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14(3), 346–348 (2002). [CrossRef]
  49. T. P. White, L. C. Botten, C. Martijn de Sterke, K. B. Dossou, and R. C. McPhedran, “Efficient slow-light coupling in a photonic crystal waveguide without transition region,” Opt. Lett. 33(22), 2644–2646 (2008). [CrossRef] [PubMed]
  50. M. A. F. Roelens, J. A. Bolger, D. Williams, S. J. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain Demultiplexing of Optical Signals at 160 Gb/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009). [CrossRef]
  51. P. J. Winzer and R. J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” IEEE J. Lightwave Technol. 24(12), 4711–4728 (2006). [CrossRef]
  52. C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18(7), 6831–6840 (2010). [CrossRef] [PubMed]
  53. R. W. Boyd, Nonlinear Optics, 3rd Edition, (Academic Press, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited