OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7807–7819

Micropipe flow visualization using digital in-line holographic microscopy

Nicolas Verrier, Clément Remacha, Marc Brunel, Denis Lebrun, and Sébastien Coëtmellec  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 7807-7819 (2010)
http://dx.doi.org/10.1364/OE.18.007807


View Full Text Article

Enhanced HTML    Acrobat PDF (711 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Digital in-line holography is used to visualize particle motion within a cylindrical micropipe. Analytical expression of the intensity distribution recorded in the CCD sensor plane is derived using the generalized Huygens-Fresnel integral associated with the ABCD matrices formalism. Holograms obtained in a 100µm in diameter micropipe are then reconstructed using fractional Fourier transformation. Astigmatism brought by the cylindrical micropipe is finally used to select a three dimensional region of interest in the microflow and thus to improve axial localization of objects located within a micropipe. Experimental results are presented and a short movie showing particle motion within a micropipe is given.

© 2010 OSA

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(090.0090) Holography : Holography

ToC Category:
Holography

History
Original Manuscript: February 5, 2010
Revised Manuscript: March 19, 2010
Manuscript Accepted: March 22, 2010
Published: March 30, 2010

Citation
Nicolas Verrier, Clément Remacha, Marc Brunel, Denis Lebrun, and Sébastien Coëtmellec, "Micropipe flow visualization using digital in-line holographic microscopy," Opt. Express 18, 7807-7819 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7807


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Malek, D. Allano, S. Coëtmellec, C. Özkul, and D. Lebrun, “Digital in-line holography for three-dimensional-two-components particle tracking velocimetry,” Meas. Sci. Technol. 15(4), 699–705 (2004). [CrossRef]
  2. E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206(20), 3657–3666 (2003). [CrossRef] [PubMed]
  3. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001). [CrossRef] [PubMed]
  4. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45(5), 836–850 (2006). [CrossRef] [PubMed]
  5. J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Opt. Lett. 31(9), 1211–1213 (2006). [CrossRef] [PubMed]
  6. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28(3), 164–166 (2003). [CrossRef] [PubMed]
  7. J. Darabi, M. M. Ohabi, and D. Devoe, “An electrohydrodynamic polarization micropump for electronic cooling,” J. Microelectromech. Syst. 10(1), 98–106 (2001). [CrossRef]
  8. C. D. Meinhart and H. Zhang, “The flow structure inside a microfabricated inkjet printhead,” J. Microelectromech. Syst. 9(1), 67–75 (2000). [CrossRef]
  9. D. Sinton, “Microscale flow visualization,” Microfluid. Nanofluid. 1(1), 2–21 (2004). [CrossRef]
  10. C. S. Vikram, “Particle Field Holography” in Cambridge Studies in Modern optics (Cambridge U. Press, 1992).
  11. S. Satake, T. Kunugi, K. Sato, and T. Ito, “Digital holographic particle tracking velocimetry for 3-D transient flow around an obstacle in a narrow channel,” Opt. Rev. 11, 162–164 (2004).
  12. S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro-channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12(6), 442–444 (2005). [CrossRef]
  13. S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17(7), 1647–1651 (2006). [CrossRef]
  14. S. Satake, H. Kanamori, T. Kunugi, K. Sato, T. Ito, and K. Yamamoto, “Parallel computing of a digital hologram and particle searching for microdigital-holographic particle-tracking velocimetry,” Appl. Opt. 46(4), 538–543 (2007). [CrossRef] [PubMed]
  15. S. Satake, T. Anraku, H. Kanamori, T. Kunugi, K. Sato, and T. Ito, “Measurement of three-dimensional flow in microchannel with complex shape by micro-digital-holographic particle-tracking velocimetry,” J. Heat Transfer 130(4), 042413 (2008). [CrossRef]
  16. N. Verrier, S. Coëtmellec, M. Brunel, and D. Lebrun, “Digital in-line holography in thick optical systems: application to visualization in pipes,” Appl. Opt. 47(22), 4147–4157 (2008). [CrossRef] [PubMed]
  17. S. A. Collins., “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60(9), 1168–1177 (1970). [CrossRef]
  18. F. Nicolas, S. Coëtmellec, M. Brunel, D. Allano, D. Lebrun, and A. J. E. M. Janssen, “Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam,” J. Opt. Soc. Am. A 22(11), 2569–2577 (2005). [CrossRef]
  19. N. Verrier, S. Coëtmellec, M. Brunel, D. Lebrun, and A. J. E. M. Janssen, “Digital in-line holography with an elliptical, astigmatic Gaussian beam: wide-angle reconstruction,” J. Opt. Soc. Am. A 25(6), 1459–1466 (2008). [CrossRef]
  20. N. Verrier, S. Coëtmellec, M. Brunel, and D. Lebrun, “Determination of 3D-region of interest using digital in-line holography with astigmatic Gaussian beams,” J. Europ. Opt. Soc. Rap. Public 4, 09038 (2009). [CrossRef]
  21. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994). [CrossRef] [PubMed]
  22. C. Palma and V. Bagini, “Extension of the Fresnel transform to ABCD systems,” J. Opt. Soc. Am. A 14(8), 1774–1779 (1997). [CrossRef]
  23. H. T. Yura and S. G. Hanson, “Optical beam wave propagation through complex optical systems,” J. Opt. Soc. Am. A 4(10), 1931–1948 (1987). [CrossRef]
  24. J. J. Wen and M. Breazeale, “A diffraction beam expressed as the superposition of Gaussian beams,” J. Acoust. Soc. Am. 83(5), 1752–1756 (1988). [CrossRef]
  25. X. Du and D. Zhao, “Propagation of decentered elliptical Gaussian beams in apertured and nonsymmetrical optical systems,” J. Opt. Soc. Am. A 23(3), 625–631 (2006). [CrossRef]
  26. X. Du and D. Zhao, “Propagation of elliptical Gaussian beams in apertured and misaligned optical systems,” J. Opt. Soc. Am. A 23(8), 1946–1950 (2006). [CrossRef]
  27. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform: with Application in Optics and Signal Processing (Wiley, 2001).
  28. V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl. 25(3), 241–265 (1980). [CrossRef]
  29. A. C. McBride and F. H. Kerr, “On Namias’s fractional Fourier transforms,” IMA J. Appl. Math. 39(2), 159–175 (1987). [CrossRef]
  30. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10(10), 2181–2186 (1993). [CrossRef]
  31. P. Pellat-Finet, “Fresnel diffraction and the fractional-order Fourier transform,” Opt. Lett. 19(18), 1388–1390 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (2242 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited