OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7835–7850

Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system

Yuting Lin, William C. Barber, Jan S. Iwanczyk, Werner Roeck, Orhan Nalcioglu, and Gultekin Gulsen  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 7835-7850 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (757 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, a first-of-its-kind fully integrated tri-modality system that combines fluorescence, diffuse optical and x-ray tomography (FT/DOT/XCT) into the same setting is presented. The purpose of this system is to perform quantitative fluorescence tomography using multi-modality imaging approach. XCT anatomical information is used as structural priori while optical background heterogeneity information obtained by DOT measurements is used as functional priori. The performance of the hybrid system is evaluated using multi-modality phantoms. In particular, we show that a 2.4 mm diameter fluorescence inclusion located in a heterogeneous medium can be localized accurately with the functional a priori information, although the fluorophore concentration is recovered with 70% error. On the other hand, the fluorophore concentration can be accurately recovered within 8% error only when both DOT optical background functional and XCT structural a priori information are utilized to guide and constrain the FT reconstruction algorithm.

© 2010 OSA

OCIS Codes
(110.4190) Imaging systems : Multiple imaging
(170.0110) Medical optics and biotechnology : Imaging systems
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.7440) Medical optics and biotechnology : X-ray imaging
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 18, 2009
Revised Manuscript: March 2, 2010
Manuscript Accepted: March 10, 2010
Published: March 31, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Yuting Lin, William C. Barber, Jan S. Iwanczyk, Werner Roeck, Orhan Nalcioglu, and Gultekin Gulsen, "Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system," Opt. Express 18, 7835-7850 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov., “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17(4), 375–378 (1999). [CrossRef] [PubMed]
  2. C. H. Tung, S. Bredow, U. Mahmood, and R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging,” Bioconjug. Chem. 10(5), 892–896 (1999). [CrossRef] [PubMed]
  3. X. Chen, P. S. Conti, and R. A. Moats, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts,” Cancer Res. 64(21), 8009–8014 (2004). [CrossRef] [PubMed]
  4. Z. Cheng, Y. Wu, Z. Xiong, S. S. Gambhir, and X. Chen, “Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice,” Bioconjug. Chem. 16(6), 1433–1441 (2005). [CrossRef] [PubMed]
  5. A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008). [CrossRef] [PubMed]
  6. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42(16), 3081–3094 (2003). [CrossRef] [PubMed]
  7. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003). [CrossRef] [PubMed]
  8. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006). [CrossRef] [PubMed]
  9. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360°geometry projections,” Opt. Lett. 32(4), 382–384 (2007). [CrossRef] [PubMed]
  10. X. Zhang, C. Badea, M. Jacob, and G. A. Johnson, “Development of a noncontact 3-D fluorescence tomography system for small animal in vivo imaging,” Proc. Soc. Photo Opt. Instrum. Eng. 7 191, nihpa106691 (2009).
  11. S. Azman, J. Gjaerum, D. Meier, L. T. Muftuler, G. Maehlum, O. Nalcioglu, B. E. Patt, B. Sundal, M. Szawlowski, B. M. W. Tsui, D. J. Wagenaar, and Y. Wang, “A nuclear radiation detector system with integrated readout for SPECT/MR small animal imaging, ” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2007), pp. 2311–17.
  12. O. Nalcioglu, T. Muftuler, D. Wagenaar, M. Szawlowski, M. Kapusta, N. Pawlov, G. Maehlum, and P. Patt, “Development of MR-Compatible SPECT System: A Feasibility Study,” presented at Annual Meeting of the ISMRM, Berlin, Germany, 19–25 May 2007.
  13. O. Nalcioglu, W. Roeck, M. Hamamura, S.-H. Ha, T. Muftuler, D. Wagenaar, D. Meier, and B. Patt, “Development of An MR-Compatible SPECT System (MRSPECT): A Feasibility Study,” J. Nucl. Med. submitted.
  14. D. Wagenaar, O. Nalcioglu, L. Muftuler, M. Szawlowski, M. Kapusta, N. Pawlov, D. Meier, G. Maehlum, and B. Patt, “Development of MRI-Compatible Nuclear Medicine Imaging Detectors,” in IEEE Nuclear Science Symposium and Medical Imaging Conference. (IEEE, 2006), pp. 1825–28.
  15. M. F. Di Carli, “Hybrid imaging: integration of nuclear imaging and cardiac CT,” Cardiol. Clin. 27(2), 257–263 (2009). [CrossRef] [PubMed]
  16. S. Basu and A. Alavi, “Revolutionary impact of PET and PET-CT on the day-to-day practice of medicine and its great potential for improving future health care,” Nucl. Med. Rev. Cent. East. Eur. 12(1), 1–13 (2009). [PubMed]
  17. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006). [CrossRef] [PubMed]
  18. Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13(4), 044006 (2008). [CrossRef] [PubMed]
  19. Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009). [CrossRef] [PubMed]
  20. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004). [CrossRef]
  21. H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies,” Appl. Opt. 44(11), 2177–2188 (2005). [CrossRef] [PubMed]
  22. G. Gulsen, M. B. Unlu, O. Birgul, and O. Nalcioglu, “Simultaneous monitoring of multiple contrast agents using a hybrid MR-DOT system,” Proc. SPIE 6431, (2007).
  23. G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined Diffuse Optical Tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5(4), 351–363 (2006). [PubMed]
  24. O. Birgul, G. Gulsen, R. Shafiiha, M. B. Unlu, and O. Nalcioglu, “In vivo Small Animal Imaging using Combined MR-DOT System,” in Biomedical Optics Topical Meeting, Technical Digest (Optical Society of America, 2006), paper TuG1.
  25. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15(7), 4066–4082 (2007). [CrossRef] [PubMed]
  26. Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007). [CrossRef] [PubMed]
  27. Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48(7), 1328–1336 (2009). [CrossRef] [PubMed]
  28. D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009). [CrossRef] [PubMed]
  29. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008). [CrossRef] [PubMed]
  30. A. da Silva, T. Bordy, M. Debourdeau, J. M. Dinten, P. Peltie, and P. Rizo, “Coupling X-ray and optical tomography systems for in vivo examination of small animals,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (IEEE, 2007), pp. 3335–3338.
  31. A. Da Silva, M. Leabad, C. Driol, T. Bordy, M. Debourdeau, J. M. Dinten, P. Peltié, and P. Rizo, “Optical calibration protocol for an x-ray and optical multimodality tomography system dedicated to small-animal examination,” Appl. Opt. 48(10), D151–D162 (2009). [CrossRef] [PubMed]
  32. R. B. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, R. Söhngen, M. Zientkowska, and V. Ntziachristos, “Hybrid fluorescence tomography/x-ray tomography improves reconstruction quality,” in Proc. SPIE 7370 (2009).
  33. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26(12), 893–895 (2001). [CrossRef]
  34. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007). [CrossRef] [PubMed]
  35. Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47(12), 2011–2016 (2008). [CrossRef] [PubMed]
  36. Y. Lin, H. Yan, G. Gulsen, and O. Nalcioglu, “Dual-modality molecular imaging for small animals using fluorescence and x-ray computed tomography,” in Proc. SPIE 7370 (2009).
  37. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990). [CrossRef] [PubMed]
  38. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997). [CrossRef] [PubMed]
  39. A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, “Three-dimensional fluorescence lifetime tomography,” Med. Phys. 32(4), 992–1000 (2005). [CrossRef] [PubMed]
  40. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007). [CrossRef] [PubMed]
  41. C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C. H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model,” Radiology 221(2), 523–529 (2001). [CrossRef] [PubMed]
  42. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005). [CrossRef] [PubMed]
  43. V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29(5), 803–809 (2002). [CrossRef] [PubMed]
  44. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007). [CrossRef] [PubMed]
  45. D. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX,” Opt. Express 16(12), 8581–8593 (2008). [CrossRef] [PubMed]
  46. E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 44019 (2005). [CrossRef] [PubMed]
  47. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007). [CrossRef] [PubMed]
  48. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10(5), 051504 (2005). [CrossRef] [PubMed]
  49. D. P. Cormode, P. A. Jarzyna, W. J. M. Mulder, and Z. A. Fayad, “Modified natural nanoparticles as contrast agents for medical imaging,” Adv. Drug Deliv. Rev. (2009)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited