OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7872–7885

Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability

Thiago P. Mayer Alegre, Raviv Perahia, and Oskar Painter  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 7872-7885 (2010)
http://dx.doi.org/10.1364/OE.18.007872


View Full Text Article

Enhanced HTML    Acrobat PDF (6192 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design of highly wavelength tunable semiconductor laser structures is presented. The system is based on a one dimensional photonic crystal cavity consisting of two patterned, doubly-clamped nanobeams, otherwise known as a “zipper” cavity. Zipper cavities are highly dispersive with respect to the gap between nanobeams in which extremely strong radiation pressure forces exist. Schemes for controlling the zipper cavity wavelength both optically and electrically are presented. Tuning ranges as high as 75 nm are achieved for a nominal design wavelength of λ = 1.3 μm. Sensitivity of the mechanically compliant laser structure to thermal noise is considered, and it is found that dynamic back-action of radiation pressure in the form of an optical or electrical spring can be used to stabilize the laser frequency. Fabrication of zipper cavity laser structures in GaAs material with embedded self-assembled InAs quantum dots is presented, along with measurements of photoluminescence spectroscopy of the zipper cavity modes.

© 2010 Optical Society of America

OCIS Codes
(220.4880) Optical design and fabrication : Optomechanics
(230.4685) Optical devices : Optical microelectromechanical devices
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Optoelectronics

History
Original Manuscript: December 23, 2009
Revised Manuscript: March 26, 2010
Manuscript Accepted: March 27, 2010
Published: March 31, 2010

Citation
Thiago P. Mayer Alegre, Raviv Perahia, and Oskar Painter, "Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability," Opt. Express 18, 7872-7885 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7872


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. M. Hard, "Laser wavelength selection and output coupling by a grating," Appl. Opt. 9, 1825-1830 (1970). [CrossRef] [PubMed]
  2. K. Liu and M. G. Littman, "Novel geometry for single-mode scanning of tunable lasers," Opt. Express 6, 117-118 (1981).
  3. F. J. Duarte, Tunable Laser Applications, Second Edition. CRC, 2 ed. (2008). [CrossRef]
  4. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers. New York, NY: Van Nostrand Reinhold, (1993).
  5. K. Srinivasan and O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled micro disk quantum dot system," Nature 450, 862-865 (2007). [CrossRef] [PubMed]
  6. E. Bruce, "Tunable Lasers," IEEE Spectrum 39, 35-39 (2002). [CrossRef]
  7. A. Q. Liu and X. M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microeng. 17, R1-R13 (2007). [CrossRef]
  8. L. Coldren and S. Corzine, "Continuously-tunable single-frequency semiconductor lasers," IEEE J. Quantum Electron. 23, 903-908 (1987). [CrossRef]
  9. Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photonics Technol. Lett. 9, 25-27 (1997). [CrossRef]
  10. M. Kitamura, M. Seki, M. Yamaguchi, I. Mito, K. Kobayashi, and T. Matsuoka, "High-power single-longitudinal mode operation of 1.3 μm DFB-DC-PBH LD," Electron. Lett. 19, 840-841 (1983). [CrossRef]
  11. L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers," Opt. Express 14, 11660-11667 (2006). [CrossRef] [PubMed]
  12. V. Moreau, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Proof-of-principle of surface detection with air-guided quantum cascade lasers," Opt. Express 16, 8387-8396 (2008). [CrossRef]
  13. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nature Photon. 2, 180-184 (2008). [CrossRef]
  14. M.-C. M. Lee and M. C. Wu, "MEMS-Actuated microdisk resonators with variable power coupling ratios," IEEE Photon. Technol. Lett. 17, 1034-1036 (2005). [CrossRef]
  15. K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, "Cooling and control of a cavity optoelectromechanical system," arXiv:0909.0082v3 [quant-ph], (2009).
  16. T. J. Kippenberg and K. J. Vahala, "Cavity optomechanics: Back-Action at the mesoscale," Science 321, 1172-1176 (2008). [CrossRef] [PubMed]
  17. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, "Optical and mechanical design of a "zipper" photonic crystaloptomechanical cavity," Opt. Express 17, 3802-3817 (2009). [CrossRef] [PubMed]
  18. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photoniccrystal optomechanical cavity," Nature 459, 550-555 (2009). [CrossRef] [PubMed]
  19. R. M. Camacho, J. Chan, M. Eichenfield, and O. Painter, "Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity," Opt. Express 17, 15726-15735 (2009). [CrossRef] [PubMed]
  20. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwell’s equations with shifting material boundaries," Phys. Rev. E 65, 066611 (2002). [CrossRef]
  21. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, "Optomechanical crystals," Nature 462, 78-82 (2009). [CrossRef] [PubMed]
  22. N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, and M. Elwenspoek, "Stiction in surface micromachining," J. Micromech. Microeng. 6, 385-397 (1996). [CrossRef]
  23. R. Maboudian and R. T. Howe, "Critical review: Adhesion in surface micromechanical structures," J. Vac. Sci. Technol. B 15, 1-20 (1997). [CrossRef]
  24. J. Rosenberg, Q. Lin, and O. Painter, "Static and dynamic wavelength routing via the gradient optical force," Nature Photon. 3, 478-483 (2009). [CrossRef]
  25. T. J. Kippenberg and K. J. Vahala, "Cavity Opto-Mechanics," Opt. Express 15, 17172-17205 (2007). [CrossRef] [PubMed]
  26. V. B. Braginsky, F. Y. Khalili, and K. S. Thorne, Quantum Measurement. Cambridge University Press, (1995).
  27. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, "Mechanical oscillation and cooling actuated by the optical gradient force," Phys. Rev. Lett. 103, 103601 (2009). [CrossRef] [PubMed]
  28. R. Perahia, T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, "Surface-plasmon mode hybridization in subwavelength microdisk lasers," Appl. Phys. Lett. 95, 201114 (2009). [CrossRef]
  29. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. Veldhoven, F. W. M. V. Otten, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007). [CrossRef]
  30. P. R. Rice and H. J. Carmichael, "Photon statistics of a cavity-QED laser: A comment on the laser-phase transition analogy," Phys. Rev. A 50, 4318-4329 (1994). [CrossRef] [PubMed]
  31. G. Björk, A. Karlsson, and Y. Yamamoto, "On the line width of lasers," Appl. Phys. Lett. 60, 304-306 (1992).
  32. R. E. Slusher, "Optical processes in microcavities," Semicond. Sci. Technol. 9, 2025-2030 (1994). [CrossRef]
  33. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Loncar, "Dynamically reconfigurable photonic crystal nanobeam cavities," arXiv:0909.2278, (2009).
  34. M. A. Sillanpaa, J. Sarkar, J. Sulkko, J. Muhonen, and P. J. Hakonen, "Accessing nanomechanical resonators via a fast microwave circuit," Appl. Phys. Lett. 95, 011909 (2009). [CrossRef]
  35. G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, "The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-awell (DWELL) structures," IEEE J. Quantum. Electron. 36, 1272-1279 (2000). [CrossRef]
  36. A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, "Low-threshold current density 1.3-μm InAs quantum dot lasers with the dots-in-a-well (DWELL) structure," IEEE Photon. Technol. Lett. 12, 591-593 (2000). [CrossRef]
  37. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots," Opt. Express 14, 1094-1105 (2006). [CrossRef] [PubMed]
  38. J.W. Seo, T. Koker, S. Agarwala, and I. Adesida, "Etching characteristics of AlxGa1−xAs in (NH4)Sx solutions," Appl. Phys. Lett. 60, 1114-1116 (1992). [CrossRef]
  39. W.-Y. Hwang, J. Baillargeon, S. N. G. Chu, P. F. Sciortino, and A. Y. Cho, "GaInAsP/InP distributed feedback lasers grown directly on grated substrates by solid-source molecular beam epitaxy," J. Vac. S. Tech. B 16, 1422-1425 (1998). [CrossRef]
  40. P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, "A broadband superconducting detector suitable for use in large arrays," Nature 425, 817-821 (2003). [CrossRef] [PubMed]
  41. H. Haus, "Mode-locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited