OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7911–7916

High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier

Paweł Wnuk, Yuriy Stepanenko, and Czesław Radzewicz  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 7911-7916 (2010)
http://dx.doi.org/10.1364/OE.18.007911


View Full Text Article

Enhanced HTML    Acrobat PDF (991 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a high gain amplification of broadband ultraviolet femtosecond pulses in an optical parametric chirped pulse amplifier. Broadband ultraviolet seed pulses were obtained by an achromatic frequency doubling of the output from a femtosecond Ti:Sapphire oscillator. Stretched seed pulses were amplified in a multipass parametric amplifier with a single BBO crystal pumped by a ns frequency quadrupled Nd:YAG laser. A noncollinear configuration was used for a broadband amplification. The total (after compression) amplification of 2.5∙105 was achieved, with compressed pulse energy of 30 μJ and pulse duration of 24 fs. We found that the measured gain was limited by thermal effects induced by the absorption of the pump laser by color centers created in the BBO crystal.

© 2010 OSA

OCIS Codes
(140.4480) Lasers and laser optics : Optical amplifiers
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Ultrafast Optics

History
Original Manuscript: January 25, 2010
Revised Manuscript: March 8, 2010
Manuscript Accepted: March 9, 2010
Published: March 31, 2010

Citation
Paweł Wnuk, Yuriy Stepanenko, and Czesław Radzewicz, "High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier," Opt. Express 18, 7911-7916 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7911


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Cerullo and S. De Silversti, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003). [CrossRef]
  2. A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27(5), 306–308 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-5-306 . [CrossRef]
  3. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985). [CrossRef]
  4. A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4-6), 437–440 (1992). [CrossRef]
  5. P. Wnuk, Y. Stepanenko, and C. Radzewicz, “Multi-terawatt chirped pulse optical parametric amplifier with a time-shear power amplification stage,” Opt. Express 17(17), 15264–15273 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-15264 . [CrossRef] [PubMed]
  6. V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal'shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007). [CrossRef]
  7. E. Gerstner, “Laser physics: extreme light,” Nature 446(7131), 16–18 (2007). [CrossRef] [PubMed]
  8. P. Simon, J. Bekesi, C. Dölle, J.-H. Klein-Wiele, G. Marowsky, S. Szatmari, and B. Wellegehausen, “Ultraviolet femtosecond pulses: Key technology for sub-micron machining and efficient XUV pulse generation,” Appl. Phys. B 74, 189–192 (2002). [CrossRef]
  9. I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69(6), 1897–2003 (2006). [CrossRef]
  10. Z. Liu, T. Kozeki, Y. Suzuki, N. Sarukura, K. Shimamura, T. Fukuda, M. Hirano, and H. Hosono, “Chirped-pulse amplification of ultraviolet femtosecond pulses by use of Ce(3+):LiCaAlF(6) as a broadband, solid-state gain medium,” Opt. Lett. 26(5), 301–303 (2001). [CrossRef]
  11. T. Kanai, X. Zhou, T. Liu, A. Kosuge, T. Sekikawa, and S. Watanabe, “Generation of terawatt 10-fs blue pulses by compensation for pulse-front distortion in broadband frequency doubling,” Opt. Lett. 29(24), 2929–2931 (2004). [CrossRef]
  12. P. Tzankov, T. Fiebig, and I. Buchvarov, “Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband parametric amplification,” Appl. Phys. Lett. 82(4), 517 (2003). [CrossRef]
  13. I. Z. Kozma, P. Baum, S. Lochbrunner, and E. Riedle, “Widely tunable sub-30 fs ultraviolet pulses by chirped sum frequency mixing,” J. Opt. Soc. Am. B 14, 444–448 (1997).
  14. M. Beutler, M. Ghotbi, F. Noack, D. Brida, C. Manzoni, and G. Cerullo, “Generation of high-energy sub-20 fs pulses tunable in the 250-310 nm region by frequency doubling of a high-power noncollinear optical parametric amplifier,” Opt. Lett. 34(6), 710–712 (2009). [CrossRef] [PubMed]
  15. A. E. Jailaubekov and S. E. Bradforth, “Tunable 30-femtosecond pulses across the deep ultraviolet,” Appl. Phys. Lett. 87(2), 021107 (2005). [CrossRef]
  16. K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, I. N. Ross, E. J. Divall, C. J. Hooker, and A. J. Langley, “Broadband amplification of ultraviolet laser pulses,” Appl. Phys. B 74(9), 163–169 (2002). [CrossRef]
  17. P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29(14), 1686–1688 (2004). [CrossRef] [PubMed]
  18. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984). [CrossRef] [PubMed]
  19. P. Wnuk and C. Radzewicz, “Coherent control and dark pulses in second harmonic generation,” Opt. Commun. 272(2), 496–502 (2007). [CrossRef]
  20. H. Kouta, “Wavelength Dependence of Repetitive-Pulse Laser-Induced Damage Threshold in β-BaB(2)O(4),” Appl. Opt. 38(3), 545–547 (1999). [CrossRef]
  21. Y. Stepanenko and C. Radzewicz, “High-gain multipass noncollinear optical parametric chirped pulse amplifier,” Appl. Phys. Lett. 86(21), 211120 (2005). [CrossRef]
  22. L. J. Waxer, V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, “High-conversion-efficiency optical parametric chirped-pulse amplification system using spatiotemporally shaped pump pulses,” Opt. Lett. 28(14), 1245–1247 (2003). [CrossRef] [PubMed]
  23. G. Anstett, M. Nittmann, A. Borsutzky, and R. Wallenstein, “Experimental investigation and numerical simulation of the spatio-temporal dynamics of nanosecond pulses in Q-switched Nd:YAG lasers,” Appl. Phys. B 76(8), 833–838 (2003). [CrossRef]
  24. I. Jovanovic, B. J. Comaskey, C. A. Ebbers, R. A. Bonner, D. M. Pennington, and E. C. Morse, “Optical parametric chirped-pulse amplifier as an alternative to Ti:sapphire regenerative amplifiers,” Appl. Opt. 41(15), 2923–2929 (2002). [CrossRef] [PubMed]
  25. C. D. Marshall, S. A. Payne, M. A. Henesian, J. A. Speth, and H. T. Powell, “Ultraviolet-induced transient absorption in potassium dihydrogen phosphate and its influence on frequency conversion,” J. Opt. Soc. Am. B 11(5), 774–785 (1994). [CrossRef]
  26. A. Dubietis, G. Tamošauskas, A. Varanavi Ius, and G. Valiulis, “Two-Photon Absorbing Properties of Ultraviolet Phase-Matchable Crystals at 264 and 211 nm,” Appl. Opt. 39(15), 2437–2440 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited