OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7929–7945

Sensitivity of coherent dual-comb spectroscopy

Nathan R. Newbury, Ian Coddington, and William Swann  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 7929-7945 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1513 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Coherent dual comb spectroscopy can provide high-resolution, high-accuracy measurements of a sample response in both magnitude and phase. We discuss the achievable signal-to-noise ratio (SNR) due to both additive white noise and multiplicative noise, and the corresponding sensitivity limit for trace gas detection. We show that sequential acquisition of the overall spectrum through a tunable filter, or parallel acquisition of the overall spectrum through a detector array, can significantly improve the SNR under some circumstances. We identify a useful figure of merit as the quality factor, equal to the product of the SNR, normalized by the square root of the acquisition time, and the number of resolved frequency elements. For a single detector and fiber-laser based system, this quality factor is 106 – 107 Hz1/2.

© 2010 Optical Society of America

OCIS Codes
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6310) Spectroscopy : Spectroscopy, heterodyne

ToC Category:

Original Manuscript: January 29, 2010
Revised Manuscript: March 12, 2010
Manuscript Accepted: March 15, 2010
Published: March 31, 2010

Nathan R. Newbury, Ian Coddington, and William Swann, "Sensitivity of coherent dual-comb spectroscopy," Opt. Express 18, 7929-7945 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Keilmann, C. Gohle, and R. Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer," Opt. Lett. 29, 1542-1544 (2004). [CrossRef] [PubMed]
  2. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, "Frequency-comb infrared spectrometer for rapid, remote chemical sensing," Opt. Express 13, 9029-9038 (2005). [CrossRef] [PubMed]
  3. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, "Terahertz frequency comb by multifrequency heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy," Appl. Phys. Lett. 88, 241104 (2006). [CrossRef]
  4. P. Giaccari, J. D. Deschenes, P. Saucier, J. Genest, and P. Tremblay, "Active fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method," Opt. Express 16, 4347-4365 (2008). [CrossRef] [PubMed]
  5. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, "Cavity-enhanced dual-comb spectroscopy," Nat. Photon. 4, 55-57 (2009). [CrossRef]
  6. I. Coddington, W. C. Swann, and N. R. Newbury, "Coherent multiheterodyne spectroscopy using stabilized optical frequency combs," Phys. Rev. Lett. 100, 013902 (2008). [CrossRef] [PubMed]
  7. I. Coddington, W. Swann, and N. Newbury, "Time-domain spectroscopy of molecular free-induction decay in the infrared," Opt. Lett., accepted (2010). [CrossRef] [PubMed]
  8. I. Coddington, W. Swann, and N. Newbury, "Coherent dual-comb spectroscopy at high signal to noise," http://arxiv.org/abs/1001.3865 (2010).
  9. R. J. Bell, Introductory Fourier transform spectroscopy (Academic Press, 1972).
  10. J. Chamberlain, The Principles of Interferometric Spectroscopy (John Wiley and Sons, Inc, 1979).
  11. J. R. Birch, "Dispersive Fourier-transform spectroscopy," Mikrochimica Acta 3, 105-122 (1987).
  12. N. Almoayed and M. Afsar, "High-resolution absorption coefficient and refractive index spectra of carbon monoxide gas at millimeter and submillimeter wave-lengths," IEEE T. Instrum. Meas. 55, 1033-1037 (2006). [CrossRef]
  13. S. Schiller, "Spectrometry with frequency combs," Opt. Lett. 27, 766-768 (2002). [CrossRef]
  14. J. W. Brault, High Resolution in Astronomy (Geneva Observatory, 1985), Fourier transform spectrometry, pp. 1-65.
  15. L. A. Sromovsky, "Radiometric errors in complex Fourier transform spectrometry," Appl. Opt. 42, 1779-1787 (2003). [CrossRef] [PubMed]
  16. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).
  17. V. V. Protopopov, Laser Heterodyning (Springer Berlin / Heidelberg, 2009). [CrossRef]
  18. W. Demtroder, Laser Spectroscopy (Springer, 1996), 2nd ed.
  19. I. Coddington, W. C. Swann, and N. R. Newbury, "Coherent linear optical sampling at 15 bits of resolution," Opt. Lett. 34, 2153-2155 (2009). [CrossRef] [PubMed]
  20. N. R. Newbury and W. C. Swann, "Low-noise fiber-laser frequency combs (invited), " J. Opt. Soc. Am. B 24, 1756-1770 (2007). [CrossRef]
  21. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  22. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2002). [CrossRef]
  23. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003). [CrossRef] [PubMed]
  24. T. W. Hänsch, "Nobel lecture: Passion for precision," Rev. Mod. Phys. 78, 1297-1309 (2006). [CrossRef]
  25. J. L. Hall, "Nobel lecture: Defining and measuring optical frequencies," Rev. Mod. Phys. 78, 1279-1295 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited