OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7946–7954

Tuning quantum-dot based photonic devices with liquid crystals

Karoline A. Piegdon, Stefan Declair, Jens Förstner, Torsten Meier, Heiner Matthias, Martin Urbanski, Heinz-S. Kitzerow, Dirk Reuter, Andreas D. Wieck, Axel Lorke, and Cedrik Meier  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 7946-7954 (2010)
http://dx.doi.org/10.1364/OE.18.007946


View Full Text Article

Enhanced HTML    Acrobat PDF (613 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Microdisks made from GaAs with embedded InAs quantum dots are immersed in the liquid crystal 4-cyano-4’-pentylbiphenyl (5CB). The quantum dots serve as emitters feeding the optical modes of the photonic cavity. By changing temperature, the liquid crystal undergoes a phase transition from the isotropic to the nematic state, which can be used as an effective tuning mechanism of the photonic modes of the cavity. In the nematic state, the uniaxial electrical anisotropy of the liquid crystal molecules can be exploited for orienting the material in an electric field, thus externally controlling the birefringence of the material. Using this effect, an electric field induced tuning of the modes is achieved. Numerical simulations using the finite-differences time-domain (FDTD) technique employing an anisotropic dielectric medium allow to understand the alignment of the liquid crystal molecules on the surface of the microdisk resonator.

© 2010 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.6000) Materials : Semiconductor materials
(230.5750) Optical devices : Resonators

ToC Category:
Materials

History
Original Manuscript: February 2, 2010
Revised Manuscript: March 15, 2010
Manuscript Accepted: March 16, 2010
Published: March 31, 2010

Citation
Karoline A. Piegdon, Stefan Declair, Jens Förstner, Torsten Meier, Heiner Matthias, Martin Urbanski, Heinz-S. Kitzerow, Dirk Reuter, Andreas D. Wieck, Axel Lorke, and Cedrik Meier, "Tuning quantum-dot based photonic devices with liquid crystals," Opt. Express 18, 7946-7954 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7946


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  2. K. Srinivasan and O. Painter, "Optical fiber taper couling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures," Appl. Phys. Lett. 90, 031114 (2007). [CrossRef]
  3. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004). [CrossRef] [PubMed]
  4. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shekin, and D. G. Deppe," Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  5. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamog¸lu, "Tuning photonic crystal nanocavity modes by wet chemical etching," Appl. Phys. Lett. 87, 021108 (2005). [CrossRef]
  6. F. Reinitzer, "Beiträge zur Kenntniss des Cholesterins," Monatshefte für Chemie 9, 421-441 (1888). [CrossRef]
  7. K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999). [CrossRef]
  8. Ch. Schuller, F. Klopf, J. P Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003). [CrossRef]
  9. G. Mertens, R. B. Wehrspohn, H.-S. Kitzerow, S. Matthias, C. Jamois, and U. Gösele, "Tunable defect mode in a three-dimensional photonic crystal," Appl. Phys. Lett. 87, 241108 (2005). [CrossRef]
  10. M. A. Dündar, H. H. J. E. Kicken, A. Yu. Silov, R. N¨otzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, "Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities," Appl. Phys. Lett. 95, 181111 (2009). [CrossRef]
  11. S. M. Weiss, H. Ouyang, J. Zhang, and P. M. Fauchet, "Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals," Opt. Express 13, 1090-1097 (2005). [CrossRef] [PubMed]
  12. W. S. Lau, E. F. Chor, S. P. Kek, W. H. bin Abdul Aziz, H. C. Lim, C. H. Heng, and R. Zhao, "The Development of a Highly Selective KI/I2/H2O/H2SO4 Etchant for the Selective Etching of Al0.3Ga0.7As over GaAs," Jpn. J. Appl. Phys. 36, 3770-3774 (1997). [CrossRef]
  13. I. C. Khoo and S. T. Wu, Optics and nonlinear Optics of Liquid Crystals, (World Scientific Publishing, Singapore, 1993).
  14. J. P. Kim, A. M. Sarangan, "Temperature-dependent Sellmeier equation for the refractive index of AlxGa1xAs," Opt. Lett. 32, 536-538 (2007). [CrossRef] [PubMed]
  15. S. K. Kundu, S. Okudaira, M. Kosuge, N. Shinyshiki, and S. Yagihara, "Broadband dielectric spectroscopy of a nematic liquid crystal in benzene," J. Chem. Phys. 129, 164509 (2008). [CrossRef] [PubMed]
  16. A. Taflove, S.C. Hagness, Computational Electrodynamics 3rd ed., (Artech House Publishers, Boston, 2005).
  17. V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals and its applications," J. Chem. Phys. 107, 6756-6769 (1997). [CrossRef]
  18. V. A. Mandelshtam and H. S. Taylor, "Erratum: Harmonic inversion of time signals and its applications," J. Chem. Phys. 109, 4128 (1998). [CrossRef]
  19. J. Li and S.-T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896 (2004). [CrossRef]
  20. K. Srinivasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited