OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7955–7964

Microwave optical double resonance spectroscopy of ammonia in a hollow-core fiber

Jan C. Petersen and Jan Hald  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 7955-7964 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (932 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have demonstrated microwave optical double resonance spectroscopy of the ν1 + ν3 and ν1 + 2ν4 bands of ammonia in a hollow-core photonic bandgap fiber. Signal strength and lineshapes are analyzed. Spectroscopic assignments of previously assigned lines and previously proposed assignments have been confirmed and new assignments have been made. Several microwave transitions in the excited vibrational states have been measured for the first time.

© 2010 OSA

OCIS Codes
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6370) Spectroscopy : Spectroscopy, microwave
(300.6390) Spectroscopy : Spectroscopy, molecular
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:

Original Manuscript: February 2, 2010
Revised Manuscript: March 25, 2010
Manuscript Accepted: March 26, 2010
Published: March 31, 2010

Jan C. Petersen and Jan Hald, "Microwave optical double resonance spectroscopy of ammonia in a hollow-core fiber," Opt. Express 18, 7955-7964 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Jones, “Infrared-Microwave Double Resonance Techniques,” in Modern Aspects of Microwave Spectroscopy, G. W. Chantry, ed., (Academic Press, N.Y., 1979).
  2. C. Ishibashi, R. Saneto, and H. Sasada, “Infrared radio-frequency double resonance spectroscopy of molecular vibrational-overtone bands using a Fabry-Perot cavity-absorption cell,” J. Opt. Soc. Am. B 18(7), 1019–1029 (2001). [CrossRef]
  3. A. Czajkowski, A. J. Alcock, J. E. Bernard, A. A. Madej, M. Corrigan, and S. Chepurov, “Studies of saturated absorption and measurements of optical frequency for lines in the ν1 + ν3 and ν1 + 2ν4 bands of ammonia at 1.5 microm,” Opt. Express 17(11), 9258–9269 (2009). [CrossRef] [PubMed]
  4. U. Merker, H. K. Srivastava, A. Callagari, K. K. Lehmann, and G. Scoles, “Eigenstate resolved infrared and millimeter-wave-infrared double resonance spectroscopy of methylamine in the N-H stretch first overtone region,” Phys. Chem. Chem. Phys. 1(10), 2427–2433 (1999). [CrossRef]
  5. S. L. Coy and K. K. Lehmann, “Modeling the rotational and vibrational structure of the i.r. and optical spectrum of NH3,” Spectrochim. Acta 45A, 47–56 (1989).
  6. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005). [CrossRef] [PubMed]
  7. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005). [CrossRef] [PubMed]
  8. J. Henningsen, J. Hald, and J. C. Petersen, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13(26), 10475–10482 (2005). [CrossRef] [PubMed]
  9. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Express 31, 2489–2491 (2006).
  10. J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902 (2007). [CrossRef] [PubMed]
  11. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17(18), 16017–16026 (2009). [CrossRef] [PubMed]
  12. P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103(4), 043602 (2009). [CrossRef] [PubMed]
  13. A. M. Cubillas, J. Hald, and J. C. Petersen, “High resolution spectroscopy of ammonia in a hollow-core fiber,” Opt. Express 16(6), 3976–3985 (2008). [CrossRef] [PubMed]
  14. A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16(7), 5035–5047 (2008). [CrossRef] [PubMed]
  15. J. Henningsen and J. C. Petersen, “Infrared-microwave double resonance in methanol: coherent effects and molecular parameters,” J. Opt. Soc. Am. B 5(9), 1848–1857 (1988). [CrossRef]
  16. J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Appl. Opt. 47(15), 2790–2797 (2008). [CrossRef] [PubMed]
  17. C. H. Townes, and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, N.Y., 1955).
  18. L. Lundsberg Nielsen, F. Hegelund, and F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400-6900 cm−1,” J. Mol. Spectrosc. 162(1), 230–245 (1993). [CrossRef]
  19. L.-H. Xu, Z. Liu, I. Yakovlev, M. Yu. Tretyakov, and R. M. Lees, “External cavity tunable diode laser NH3 spectra in the 1.5 μm region,” Infrared Phys. Technol. 45(1), 31–45 (2004). [CrossRef]
  20. L. Li, R. M. Lees, and L.-H. Xu, “External cavity tunable diode laser spectra of the ν1+2ν4 stretch-band combination bands of 14NH3 and 15NH3,” J. Mol. Spectrosc. 243(2), 219–226 (2007). [CrossRef]
  21. R. M. Lees, L. Li, and L.-H. Xu, “New VISTA on ammonia in the 1.5 μm region: Assignments for the ν3+2ν4 bands of 14NH3 and 15NH3 by isotopic shift labeling,” J. Mol. Spectrosc. 251(1-2), 241–251 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited