OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8006–8018

Grating couplers for broadside input and output coupling of long-range surface plasmons

Chengkun Chen and Pierre Berini  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8006-8018 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (968 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metal gratings for in-coupling a Gaussian beam incident from broadside to the long-range surface plasmon polariton (LRSPP) propagating in one direction along a membrane-supported Au slab bounded by air or water are proposed and modeled by the finite-difference time-domain method. Grating couplers for out-coupling the propagating LRSPP into free radiation directed along broadside are also investigated. Short grating designs consisting of a small number of Au bumps yield 15% to 20% in-coupling efficiencies, and about 60% out-coupling efficiencies. LRSPP back-reflections along the membrane waveguide caused by the out-coupling grating are also calculated and discussed.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.5610) Other areas of optics : Radiation
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Optics at Surfaces

Original Manuscript: February 4, 2010
Revised Manuscript: March 6, 2010
Manuscript Accepted: March 16, 2010
Published: March 31, 2010

Chengkun Chen and Pierre Berini, "Grating couplers for broadside input and output coupling of long-range surface plasmons," Opt. Express 18, 8006-8018 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005). [CrossRef]
  3. W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006). [CrossRef]
  4. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008). [CrossRef]
  5. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008). [CrossRef] [PubMed]
  6. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009). [CrossRef]
  7. J. Dostálek, A. Kasry, and W. Knoll, “Long Range Surface Plasmons for Observation of Biomolecular Binding Events at Metallic Surfaces,” Plasmonics 2(3), 97–106 (2007). [CrossRef]
  8. V. N. Konopsky and E. V. Alieva, “Long-range plasmons in lossy metal films on photonic crystal surfaces,” Opt. Lett. 34(4), 479–481 (2009). [CrossRef] [PubMed]
  9. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007). [CrossRef] [PubMed]
  10. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons along membrane-supported metal stripes,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1479–1495 (2008). [CrossRef]
  11. R. Charbonneau and P. Berini, “Broadside coupling to long-range surface plasmons in metal stripes using prisms, particles, and an atomic force microscope probe,” Rev. Sci. Instrum. 79(7), 073106 (2008). [CrossRef] [PubMed]
  12. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005). [CrossRef]
  13. R. Charbonneau, E. Lisicka-Shrzek, and P. Berini, “Broadside coupling to long-range surface plasmons using an angle-cleaved optical fiber,” Appl. Phys. Lett. 92(10), 101102 (2008). [CrossRef]
  14. R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94(9), 091114 (2009). [CrossRef]
  15. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  16. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996). [CrossRef]
  17. J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004). [CrossRef]
  18. J. Lu, C. Petre, E. Yablonovitch, and J. Conway, “Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an Ag-SiO2 interface,” J. Opt. Soc. Am. B 24(9), 2268–2272 (2007). [CrossRef]
  19. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008). [CrossRef]
  20. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009). [CrossRef] [PubMed]
  21. A. Ghoshala and P. G. Kik, “Excitation of propagating surface plasmons by a periodic nanopartical array: trade-off between particle-induced near-field excitation and damping,” Appl. Phys. Lett. 94(25), 251102 (2009). [CrossRef]
  22. T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31(4), 2548–2550 (1985). [CrossRef]
  23. I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004). [CrossRef]
  24. G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006). [CrossRef]
  25. I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998). [CrossRef]
  26. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons,” Opt. Express 17(10), 8294–8301 (2009). [CrossRef] [PubMed]
  27. C. Chen and P. Berini, “Broadside excitation of long-range surface plasmons via grating coupling,” IEEE Photon. Technol. Lett. 21(24), 1831–1833 (2009). [CrossRef]
  28. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, Orlando, Florida, 1985).
  29. D. J. Segelstein, “The complex refractive index of water,” M.Sc. Thesis, University of Missouri – Kansas City, (1981).
  30. C. Chen, and J. Albert, “Photo-induced signal taps for power monitors in planar lightwave circuits,” Proc. of SPIE, 5970, 59700I1–8 (2005).
  31. C. A. Flory, “Analysis of directional grating-coupled radiation in waveguide structures,” IEEE J. Quantum Electron. 40(7), 949–957 (2004). [CrossRef]
  32. F. D. T. D. Solutions, Lumerical Solutions Inc. http://www.lumerical.com .
  33. C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7(8), 260–272 (2000). [CrossRef] [PubMed]
  34. M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19(10), 1505–1514 (1983). [CrossRef]
  35. D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley Publishing Company, 2nd Edition 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (1741 KB)     
» Media 2: MPG (1942 KB)     
» Media 3: MPG (1833 KB)     
» Media 4: MPG (2112 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited