OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8058–8076

Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins

Torre M. Bydlon, Stephanie A. Kennedy, Lisa M. Richards, J. Quincy Brown, Bing Yu, Marlee K. Junker, Jennifer Gallagher, Joseph Geradts, Lee G. Wilke, and Nimmi Ramanujam  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8058-8076 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (665 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As many as 20-70% of patients undergoing breast conserving surgery require repeat surgeries due to a close or positive surgical margin diagnosed post-operatively [1]. Currently there are no widely accepted tools for intra-operative margin assessment which is a significant unmet clinical need. Our group has developed a first-generation optical visible spectral imaging platform to image the molecular composition of breast tumor margins and has tested it clinically in 48 patients in a previously published study [2]. The goal of this paper is to report on the performance metrics of the system and compare it to clinical criteria for intra-operative tumor margin assessment. The system was found to have an average signal to noise ratio (SNR) >100 and <15% error in the extraction of optical properties indicating that there is sufficient SNR to leverage the differences in optical properties between negative and close/positive margins. The probe had a sensing depth of 0.5-2.2 mm over the wavelength range of 450-600 nm which is consistent with the pathologic criterion for clear margins of 0-2 mm. There was <1% cross-talk between adjacent channels of the multi-channel probe which shows that multiple sites can be measured simultaneously with negligible cross-talk between adjacent sites. Lastly, the system and measurement procedure were found to be reproducible when evaluated with repeated measures, with a low coefficient of variation (<0.11). The only aspect of the system not optimized for intra-operative use was the imaging time. The manuscript includes a discussion of how the speed of the system can be improved to work within the time constraints of an intra-operative setting.

© 2010 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(230.0230) Optical devices : Optical devices
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 21, 2009
Revised Manuscript: March 19, 2010
Manuscript Accepted: March 20, 2010
Published: April 1, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Torre M. Bydlon, Stephanie A. Kennedy, Lisa M. Richards, J. Quincy Brown, Bing Yu, Marlee K. Junker, Jennifer Gallagher, Joseph Geradts, Lee G. Wilke, and Nimmi Ramanujam, "Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins," Opt. Express 18, 8058-8076 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Jacobs, “Positive margins: the challenge continues for breast surgeons,” Ann. Surg. Oncol. 15(5), 1271–1272 (2008). [CrossRef] [PubMed]
  2. L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg. 198(4), 566–574 (2009). [CrossRef] [PubMed]
  3. M. C. Lee, K. Rogers, K. Griffith, K. A. Diehl, T. M. Breslin, V. M. Cimmino, A. E. Chang, L. A. Newman, and M. S. Sabel, “Determinants of breast conservation rates: reasons for mastectomy at a comprehensive cancer center,” Breast J. 15(1), 34–40 (2009). [CrossRef] [PubMed]
  4. A. C. Society, “Cancer Facts and Figures 2009,” (2009).
  5. C. Kunos, L. Latson, B. Overmoyer, P. Silverman, R. Shenk, T. Kinsella, and J. Lyons, “Breast conservation surgery achieving>or=2 mm tumor-free margins results in decreased local-regional recurrence rates,” Breast J. 12(1), 28–36 (2006). [CrossRef] [PubMed]
  6. P. H. M. Elkhuizen, M. J. van de Vijver, J. Hermans, H. M. Zonderland, C. J. H. van de Velde, and J. W. H. Leer, “Local recurrence after breast-conserving therapy for invasive breast cancer: high incidence in young patients and association with poor survival,” Int. J. Radiat. Oncol. Biol. Phys. 40(4), 859–867 (1998). [CrossRef] [PubMed]
  7. M. Clarke, R. Collins, S. Darby, C. Davies, P. Elphinstone, E. Evans, J. Godwin, R. Gray, C. Hicks, S. James, E. MacKinnon, P. McGale, T. McHugh, R. Peto, C. Taylor, Y. Wang, and Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), “Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials,” Lancet 366(9503), 2087–2106 (2005). [PubMed]
  8. A. J. Creager, J. A. Shaw, P. R. Young, and K. R. Geisinger, “Intraoperative evaluation of lumpectomy margins by imprint cytology with histologic correlation: a community hospital experience,” Arch. Pathol. Lab. Med. 126(7), 846–848 (2002). [PubMed]
  9. A. Chagpar, T. Yen, A. Sahin, K. K. Hunt, G. J. Whitman, F. C. Ames, M. I. Ross, F. Meric-Bernstam, G. V. Babiera, S. E. Singletary, and H. M. Kuerer, “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” Am. J. Surg. 186(4), 371–377 (2003). [CrossRef] [PubMed]
  10. C. E. Cox, N. N. Ku, D. S. Reintgen, H. M. Greenberg, S. V. Nicosia, and S. Wangensteen, “Touch preparation cytology of breast lumpectomy margins with histologic correlation,” Arch. Surg. 126(4), 490–493 (1991). [PubMed]
  11. S. E. Singletary, “Surgical margins in patients with early-stage breast cancer treated with breast conservation therapy,” Am. J. Surg. 184(5), 383–393 (2002). [CrossRef] [PubMed]
  12. A. O. Saarela, T. K. Paloneva, T. J. Rissanen, and H. O. Kiviniemi, “Determinants of positive histologic margins and residual tumor after lumpectomy for early breast cancer: a prospective study with special reference to touch preparation cytology,” J. Surg. Oncol. 66(4), 248–253 (1997). [CrossRef]
  13. J. C. Cendán, D. Coco, and E. M. Copeland, “Accuracy of intraoperative frozen-section analysis of breast cancer lumpectomy-bed margins,” J. Am. Coll. Surg. 201(2), 194–198 (2005). [CrossRef] [PubMed]
  14. T. P. Olson, J. Harter, A. Muñoz, D. M. Mahvi, and T. Breslin, “Frozen section analysis for intraoperative margin assessment during breast-conserving surgery results in low rates of re-excision and local recurrence,” Ann. Surg. Oncol. 14(10), 2953–2960 (2007). [CrossRef] [PubMed]
  15. T. L. Huston, R. Pigalarga, M. P. Osborne, and E. Tousimis, “The influence of additional surgical margins on the total specimen volume excised and the reoperative rate after breast-conserving surgery,” Am. J. Surg. 192(4), 509–512 (2006). [CrossRef] [PubMed]
  16. J. E. Méndez, W. W. Lamorte, A. de Las Morenas, S. Cerda, R. Pistey, T. King, M. Kavanah, E. Hirsch, and M. D. Stone, “Influence of breast cancer margin assessment method on the rates of positive margins and residual carcinoma,” Am. J. Surg. 192(4), 538–540 (2006). [CrossRef] [PubMed]
  17. M. F. Dillon, E. W. Mc Dermott, A. O’Doherty, C. M. Quinn, A. D. Hill, and N. O’Higgins, “Factors affecting successful breast conservation for ductal carcinoma in situ,” Ann. Surg. Oncol. 14(5), 1618–1628 (2007). [CrossRef] [PubMed]
  18. H. M. Kuerer, “If at first or second you don’t succeed: mastectomy?” Ann. Surg. Oncol. 12(11), 864–865 (2005). [CrossRef] [PubMed]
  19. E. D. Kurniawan, M. H. Wong, I. Windle, A. Rose, A. Mou, M. Buchanan, J. P. Collins, J. A. Miller, R. L. Gruen, and G. B. Mann, “Predictors of surgical margin status in breast-conserving surgery within a breast screening program,” Ann. Surg. Oncol. 15(9), 2542–2549 (2008). [CrossRef] [PubMed]
  20. I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000). [CrossRef] [PubMed]
  21. A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, R. Shenk, N. Wang, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Diagnosing breast cancer using Raman spectroscopy: prospective analysis,” J. Biomed. Opt. 14(5), 054023 (2009). [CrossRef] [PubMed]
  22. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005). [CrossRef] [PubMed]
  23. Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008). [CrossRef] [PubMed]
  24. F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009). [CrossRef] [PubMed]
  25. M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med. 42(1), 15–23 (2010). [CrossRef] [PubMed]
  26. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006). [CrossRef] [PubMed]
  27. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072–1078 (2006). [CrossRef] [PubMed]
  28. P. I. Tartter, J. Kaplan, I. Bleiweiss, C. Gajdos, A. Kong, S. Ahmed, and D. Zapetti, “Lumpectomy margins, reexcision, and local recurrence of breast cancer,” Am. J. Surg. 179(2), 81–85 (2000). [CrossRef] [PubMed]
  29. N. Cabioglu, K. K. Hunt, A. A. Sahin, H. M. Kuerer, G. V. Babiera, S. E. Singletary, G. J. Whitman, M. I. Ross, F. C. Ames, B. W. Feig, T. A. Buchholz, and F. Meric-Bernstam, “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Ann. Surg. Oncol. 14(4), 1458–1471 (2007). [CrossRef] [PubMed]
  30. J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009). [CrossRef] [PubMed]
  31. C. F. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique,” Lasers Surg. Med. 38(7), 714–724 (2006). [CrossRef] [PubMed]
  32. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995). [CrossRef] [PubMed]
  33. Q. Liu, C. F. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8(2), 223–236 (2003). [CrossRef] [PubMed]
  34. T. L. Huston and R. M. Simmons, “Locally recurrent breast cancer after conservation therapy,” Am. J. Surg. 189(2), 229–235 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited