OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8077–8086

Influence of pointing fluctuation on intense laser beams propagation in plasma channels

Mingwei Liu, Aihua Deng, Changquan Xia, Jiansheng Liu, Cheng Wang, Ruxin Li, and Zhizhan Xu  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8077-8086 (2010)
http://dx.doi.org/10.1364/OE.18.008077


View Full Text Article

Acrobat PDF (349 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An off-axis incident model is presented to analyze the influence of beam pointing fluctuation on the propagation properties of intense laser beams in plasma channels. The equations for the beam spot size and centroid are obtained by applying the variational method. The beam pointing fluctuation contributes additional focusing effect by amplifying relativistic self-focusing, leading to periodically modified oscillations of the spot size. The beam centroid oscillates along the channel axis with the amplitude close to its initial off-axis displacement, while the oscillation frequency is scaled as the square of the dimensionless channel strength parameter.

© 2010 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(260.5950) Physical optics : Self-focusing
(350.5500) Other areas of optics : Propagation

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 12, 2010
Revised Manuscript: March 20, 2010
Manuscript Accepted: March 21, 2010
Published: April 1, 2010

Citation
Mingwei Liu, Aihua Deng, Changquan Xia, Jiansheng Liu, Cheng Wang, Ruxin Li, and Zhizhan Xu, "Influence of pointing fluctuation on intense laser beams propagation in plasma channels," Opt. Express 18, 8077-8086 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8077


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Tajima and J. M. Dawson, “Laser Electron Accelerator,” Phys. Rev. Lett. 43(4), 267–270 (1979). [CrossRef]
  2. S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431(7008), 535–538 (2004). [CrossRef]
  3. C. G. R. Geddes, C. S. Toth, J. Van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431(7008), 538–541 (2004). [CrossRef]
  4. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431(7008), 541–544 (2004). [CrossRef]
  5. W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2(10), 696–699 (2006). [CrossRef]
  6. T. Kameshima, W. Hong, K. Sugiyama, X. Wen, Y. Wu, C. Tang, Q. Zhu, Y. Gu, B. Zhang, H. Peng, S. Kurokawa, L. Chen, T. Tajima, T. Kumita, and K. Nakajima, “0.56 GeV Laser Electron Acceleration in Ablative-Capillary-Discharge Plasma Channel,” Appl. Phys. Express 1, 066001 (2008). [CrossRef]
  7. K. Nakajima, “Compact X-ray sources: Towards a table-top free-electron laser,” Nat. Phys. 4(2), 92–93 (2008). [CrossRef]
  8. W. Leemans and E. Esarey, “Laser-driven plasma-wave electron accelerators,” Phys. Today 62(3), 44–49 (2009). [CrossRef]
  9. P. Sprangle, B. Hafizi, J. R. Peñano, R. F. Hubbard, A. Ting, C. I. Moore, D. F. Gordon, A. Zigler, D. Kaganovich, and T. M. Antonsen., “Wakefield generation and GeV acceleration in tapered plasma channels,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056405 (2001). [CrossRef]
  10. M. W. Liu, R. X. Li, Z. Z. Xu, and C. J. Kim, “Relativistic channel-coupling focusing enhanced nonlinear guiding of an intense laser beam in a plasma channel,” Phys. Lett. A 373(3), 363–366 (2009). [CrossRef]
  11. M. W. Liu, B. J. Zhou, Y. G. Yi, X. J. Liu, and L. Q. Tang, “Intensity dependence of relativistic focusing of intense laser beams propagating in plasmas,” Phys. Plasmas 14(10), 103104 (2007). [CrossRef]
  12. W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva, “Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime,” Phys. Rev. ST Accel. Beams 10(6), 061301 (2007). [CrossRef]
  13. C. McGuffey, M. Levin, T. Matsuoka, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, A. Zigler, A. Maksimchuk, and K. Krushelnick, “Guiding of 35 TW laser pulses in ablative capillary discharge waveguides,” Phys. Plasmas 16(11), 113105 (2009). [CrossRef]
  14. L. M. Chen, H. Kotaki, K. Nakajima, J. Koga, S. V. Bulanov, T. Tajima, Y. Q. Gu, H. S. Peng, X. X. Wang, T. S. Wen, H. J. Liu, C. Y. Jiao, C. G. Zhang, X. J. Huang, Y. Guo, K. N. Zhou, J. F. Hua, W. M. An, C. X. Tang, and Y. Z. Lin, “Self-guiding of 100 TW femtosecond laser pulses in centimeter-scale underdense plasma,” Phys. Plasmas 14(4), 040703 (2007). [CrossRef]
  15. C. Rechatin, J. Faure, A. Ben-Ismail, J. Lim, R. Fitour, A. Specka, H. Videau, A. Tafzi, F. Burgy, and V. Malka, “Controlling the phase-space volume of injected electrons in a laser-plasma accelerator,” Phys. Rev. Lett. 102(16), 164801 (2009). [CrossRef]
  16. H. Kotaki, I. Daito, M. Kando, Y. Hayashi, K. Kawase, T. Kameshima, Y. Fukuda, T. Homma, J. Ma, L. M. Chen, T. Z. Esirkepov, A. S. Pirozhkov, J. K. Koga, A. Faenov, T. Pikuz, H. Kiriyama, H. Okada, T. Shimomura, Y. Nakai, M. Tanoue, H. Sasao, D. Wakai, H. Matsuura, S. Kondo, S. Kanazawa, A. Sugiyama, H. Daido, and S. V. Bulanov, “Electron Optical Injection with Head-On and Countercrossing Colliding Laser Pulses,” Phys. Rev. Lett. 103(19), 194803 (2009). [CrossRef]
  17. S. Kalmykov, S. A. Yi, V. Khudik, and G. Shvets, “Electron self-injection and trapping into an evolving plasma bubble,” Phys. Rev. Lett. 103(13), 135004 (2009). [CrossRef]
  18. I. Kostyukov, E. Nerush, A. Pukhov, and V. Seredov, “Electron self-injection in multidimensional relativistic-plasma wake fields,” Phys. Rev. Lett. 103(17), 175003 (2009). [CrossRef]
  19. X. Davoine, E. Lefebvre, C. Rechatin, J. Faure, and V. Malka, “Cold optical injection producing monoenergetic, multi-GeV electron bunches,” Phys. Rev. Lett. 102(6), 065001 (2009). [CrossRef]
  20. Z. Z. Xu and R. X. Li, “Recent progress in the development of high intensity ultrashort pulse lasers at SIOM,” Chin. Opt. Lett. 5, S1–S4 (2007).
  21. L. C. Steinhauer and W. D. Kimura, “Quasistatic capillary discharge plasma model,” Phys. Rev. ST Accel. Beams 9(8), 081301 (2006). [CrossRef]
  22. G. Sun, E. Ott, Y. C. Lee, and P. Guzdar, “Self-focusing of short intense pulses in plasmas,” Phys. Fluids 30(2), 526–532 (1987). [CrossRef]
  23. Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, and E. Esarey, “Guiding of High Intensity Laser Pulses in Straight and Curved Plasma Channel Experiments,” Phys. Rev. Lett. 77(20), 4186–4189 (1996). [CrossRef]
  24. A.-A. R. Al-Rashed and B. E. A. Saleh, “Decentered Gaussian beams,” Appl. Opt. 34(30), 6819–6825 (1995). [CrossRef]
  25. K. Zhu, G. Zhou, X. Li, X. Zheng, and H. Tang, “Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere,” Opt. Express 16(26), 21315–21320 (2008). [CrossRef]
  26. P. Sprangle, A. Ting, and C. M. Tang, “Analysis of radiation focusing and steering in the free-electron laser by use of a source-dependent expansion technique,” Phys. Rev. A 36(6), 2773–2781 (1987). [CrossRef]
  27. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, San Diego, CA, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited