OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8087–8093

Experimental determination of the sensitivity of Bloch Surface Waves based sensors

Fabrizio Giorgis, Emiliano Descrovi, Caterina Summonte, Lorenzo Dominici, and Francesco Michelotti  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8087-8093 (2010)
http://dx.doi.org/10.1364/OE.18.008087


View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Detection of glucose in water solution for several different concentrations has been performed with the purpose to determine the sensitivity of Near Infrared Bloch Surface Waves (λ = 1.55μm) upon refractive index variations of the outer medium. TE-polarized electromagnetic surface waves are excited by a prism on a silicon nitride multilayer, according to the Kretschmann configuration. The real-time reflectance changes induced by discrete variations in glucose concentration has been revealed and analyzed. Without using any particular averaging strategy during the measurements, we pushed the device detection limit down to a glucose concentration of 2.5mg/dL, corresponding to a minimum detectable refractive index variation of the water solution as low as 3.8·10−6.

© 2010 OSA

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 28, 2010
Revised Manuscript: March 29, 2010
Manuscript Accepted: March 29, 2010
Published: April 1, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Fabrizio Giorgis, Emiliano Descrovi, Caterina Summonte, Lorenzo Dominici, and Francesco Michelotti, "Experimental determination of the sensitivity of Bloch Surface Waves based sensors," Opt. Express 18, 8087-8093 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8087


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface-waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978). [CrossRef]
  2. W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006). [CrossRef]
  3. M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005). [CrossRef]
  4. E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007). [CrossRef]
  5. F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009). [CrossRef] [PubMed]
  6. M. Liscidini, M. Galli, M. Patrini, R. Loo, C. Goh, C. Ricciardi, F. Giorgis, and J. E. Sipe, “Demonstration of diffraction enhancement via Bloch surface waves in a-SiN:H multilayers,” Appl. Phys. Lett. 94(4), 043117 (2009). [CrossRef]
  7. I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009). [CrossRef]
  8. D. A. Stuart, C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy,” Anal. Chem. 77(13), 4013–4019 (2005). [CrossRef] [PubMed]
  9. R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000). [CrossRef] [PubMed]
  10. Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20(8), 3096–3106 (2004). [CrossRef]
  11. G. D. Kim, G. S. Son, H. S. Lee, K. D. Kim, and S. S. Lee, “Refractometric sensor utilizing a vertically coupled polymeric microdisk resonator incorporating a high refractive index overlay,” Opt. Lett. 34(7), 1048–1050 (2009). [CrossRef] [PubMed]
  12. F. Demichelis, F. Giorgis, and C. F. Pirri, “Compositional and structural analysis of hydrogenated amorphous silicon-nitrogen alloys prepared by plasma-enhanced chemical vapour deposition,” Philos. Mag. B 74(2), 155–168 (1996). [CrossRef]
  13. S. Lettieri, S. Di Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81(25), 4706–4708 (2002). [CrossRef]
  14. E. Descrovi, F. Giorgis, L. Dominici, and F. Michelotti, “Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal,” Opt. Lett. 33(3), 243–245 (2008). [CrossRef] [PubMed]
  15. F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999). [CrossRef]
  16. F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Radiative emission properties of a-SiN:H based nanometric multilayers for light emitting devices,” J. Lumin. 80(1-4), 423–427 (1998). [CrossRef]
  17. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79(12), 4729–4735 (2007). [CrossRef] [PubMed]
  18. CRC Handbook of Chemistry and Physics, 70th ed., R. C. Weast, ed. (CRC, 1989).
  19. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009). [CrossRef] [PubMed]
  20. E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H.-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16(8), 5453–5464 (2008). [CrossRef] [PubMed]
  21. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  22. C. Ricciardi, S. Fiorilli, S. Bianco, G. Canavese, R. Castagna, I. Ferrante, G. Digregorio, S. L. Marasso, L. Napione, and F. Bussolino, “Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis,” Biosens. Bioelectron. 25(5), 1193–1198 (2010). [CrossRef]
  23. M.-J. Bañuls, V. González-Pedro, C. A. Barrios, R. Puchades, and A. Maquieira, “Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors,” Biosens. Bioelectron. 25(6), 1460–1466 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited