OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8220–8228

Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds

Lin An, Jia Qin, and Ruikang K Wang  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8220-8228 (2010)
http://dx.doi.org/10.1364/OE.18.008220


View Full Text Article

Enhanced HTML    Acrobat PDF (850 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we demonstrate for the first time that the detailed cutaneous blood flow at capillary level within dermis of human skin can be imaged by optical micro-angiography (OMAG) technique. A novel scanning protocol, i.e. fast B scan mode is used to achieve the capillary flow imaging. We employ a 1310nm system to scan the skin tissue at an imaging rate of 300 frames per second, which requires only ~5 sec to complete one 3D imaging of capillary blood flow within skin. The technique is sensitive enough to image the very slow blood flows at ~4 μm/sec. The promising results show a great potential of OMAG’s role in the diagnosis, treatment and management of human skin diseases.

© 2010 OSA

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 10, 2009
Revised Manuscript: March 10, 2010
Manuscript Accepted: March 12, 2010
Published: April 5, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Lin An, Jia Qin, and Ruikang K Wang, "Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds," Opt. Express 18, 8220-8228 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8220


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Stücker, V. Baier, T. Reuther, K. Hoffmann, K. Kellam, and P. Altmeyer, “Capillary blood cell velocity in human skin capillaries located perpendicularly to the skin surface: measured by a new laser Doppler anemometer,” Microvasc. Res. 52(2), 188–192 (1996). [CrossRef] [PubMed]
  2. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), 201 (2001). [CrossRef]
  3. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006). [CrossRef] [PubMed]
  4. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). [CrossRef]
  5. P. H. Tomlins and R. K. Wang, “Theory, development and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005). [CrossRef]
  6. Y. H. Zhao, Z. P. Chen, Z. H. Ding, H. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27(2), 98–100 (2002). [CrossRef]
  7. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009). [CrossRef] [PubMed]
  8. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15(2), 408–422 (2007). [CrossRef] [PubMed]
  9. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express 16(9), 6008–6025 (2008). [CrossRef] [PubMed]
  10. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography,” Opt. Express 17(13), 10584–10598 (2009). [CrossRef] [PubMed]
  11. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009). [CrossRef]
  12. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  13. J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007). [CrossRef] [PubMed]
  14. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008). [CrossRef] [PubMed]
  15. Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17(5), 4177–4188 (2009). [CrossRef] [PubMed]
  16. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three Dimensional Optical Angiography,” Opt. Express 15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  17. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007). [CrossRef]
  18. R. K. Wang, “Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning,” Phys. Med. Biol. 52(19), 5897–5907 (2007). [CrossRef] [PubMed]
  19. R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength,” Opt. Express 15(18), 11402–11412 (2007). [CrossRef] [PubMed]
  20. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009). [CrossRef] [PubMed]
  21. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008). [CrossRef] [PubMed]
  22. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005). [CrossRef] [PubMed]
  23. H. W. Ren, T. Sun, D. J. MacDonald, M. J. Cobb, and X. D. Li, “Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography,” Opt. Lett. 31(7), 927–929 (2006). [CrossRef] [PubMed]
  24. H. Ren and X. Li, “Clutter rejection filters for optical Doppler tomography,” Opt. Express 14(13), 6103–6112 (2006). [CrossRef] [PubMed]
  25. I. M. Braverman, “The Cutaneous Microcirculation,” J. Investig. Dermatol. Symp. Proc. 5(1), 3–9 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MOV (1126 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited