OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8251–8260

Near-diffraction-limited annular flattop beam shaping with dual phase only liquid crystal spatial light modulators

Haotong Ma, Pu Zhou, Xiaolin Wang, Yanxing Ma, Fengjie Xi, Xiaojun Xu, and Zejin Liu  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8251-8260 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1945 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the annular flattop beam shaping technique with dual phase only liquid crystal spatial light modulators (LC-SLM) based on the refractive laser beam shaping systems. One LC-SLM redistributes the intensity distribution, and the other restores the initial underlying wave front. Differing from the conventional annular beam shaping technique, the wave front of the output beam can be maintained. The influences of deviations of beam waist and beam shape on the output beam profile are discussed in detail. Experimental results show that approximate 71% of the power is enclosed in a region with less than 7% rms intensity variation. The 4.1mm diameter near-diffraction-limited beam retains an annular flattop intensity distribution without significant diffraction peaks for a working distance of more than 24cm in the near field.

© 2010 OSA

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(140.3300) Lasers and laser optics : Laser beam shaping
(220.2740) Optical design and fabrication : Geometric optical design
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 27, 2010
Revised Manuscript: March 13, 2010
Manuscript Accepted: March 28, 2010
Published: April 5, 2010

Haotong Ma, Pu Zhou, Xiaolin Wang, Yanxing Ma, Fengjie Xi, Xiaojun Xu, and Zejin Liu, "Near-diffraction-limited annular flattop beam shaping with dual phase only liquid crystal spatial light modulators," Opt. Express 18, 8251-8260 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Baykal, “Log-amplitude and phase fluctuations of higher-order annular laser beams in a turbulent medium,” J. Opt. Soc. Am. A 22(4), 672–679 (2005). [CrossRef]
  2. H. T. Eyyuboglu and Y. Baykal, “Scintillations of cos-Gaussian and annular beams,” J. Opt. Soc. Am. A 24(1), 56–162 (2007).
  3. D. P. Rhodes, D. M. Gherardi, J. Livesey, D. Mcgloin, H. Melville, T. Freegarde, and K. Dholakia, “Atom guiding along high order Laguerre–Gaussian light beams formed by spatial light modulation,” J. Mod. Opt. 53(4), 547–556 (2006). [CrossRef]
  4. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics,” Opt. Express 11(2), 158–166 (2003). [CrossRef] [PubMed]
  5. S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, “Coherent atomic waveguides from hollow optical fibers: Quantized atomic motion,” Phys. Rev. A 50(3), 2680–2690 (1994). [CrossRef] [PubMed]
  6. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995). [CrossRef] [PubMed]
  7. Y. Cai, Z. Wang, and Q. Lin, “An alternative theoretical model for an anomalous hollow beam,” Opt. Express 16(19), 15254–15267 (2008). [CrossRef] [PubMed]
  8. Y. J. Cai and S. L. He, “Propagation of various dark hollow beams in a turbulent atmosphere,” Opt. Express 14(4), 1353–1367 (2006). [CrossRef] [PubMed]
  9. X. Chu and G. Zhou, “Power coupling of a two-Cassegrain-telescopes system in turbulent atmosphere in a slant path,” Opt. Express 15(12), 7697–7707 (2007). [CrossRef] [PubMed]
  10. P. G. Hannan, “General analysis of two-mirror relay systems,” Appl. Opt. 31(4), 513–518 (1992). [CrossRef] [PubMed]
  11. Y. Yuan, Y. Cai, J. Qu, H. T. Eyyuboğlu, Y. Baykal, and O. Korotkova, “M2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere,” Opt. Express 17(20), 17344–17356 (2009). [CrossRef] [PubMed]
  12. Y. Chen, Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation properties of dark hollow beams in a weak turbulent atmosphere,” Appl. Phys. B 90(1), 87–92 (2008). [CrossRef]
  13. Ya. Izdebskaya, V. Shvedov, and A. Volyar, “Focusing of wedge-generated higher-order optical vortices,” Opt. Lett. 30(19), 2530–2532 (2005). [CrossRef] [PubMed]
  14. M. L. Hu, C. Y. Wang, Y. J. Song, Y. F. Li, L. Chai, E. E. Serebryannikov, and A. M. Zheltikov, “A hollow beam from a holey fiber,” Opt. Express 14(9), 4128–4134 (2006). [CrossRef] [PubMed]
  15. C. Zhao, Y. Cai, F. Wang, X. Lu, and Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33(12), 1389–1391 (2008). [CrossRef] [PubMed]
  16. J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt. 39(30), 5488–5499 (2000). [CrossRef]
  17. C. Liu and S. Zhang, “Study of singular radius and surface boundary constraints in refractive beam shaper design,” Opt. Express 16(9), 6675–6682 (2008). [CrossRef] [PubMed]
  18. M. Arif, M. M. Hossain, A. A. S. Awwal, and M. N. Islam, “Two-element refracting system for annular Gaussian-to-Bessel beam transformation,” Appl. Opt. 37(19), 4206–4209 (1998). [CrossRef]
  19. J. Liang, R. N. Kohn, M. F. Becker, and D. J. Heinzen, “1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator,” Appl. Opt. 48(10), 1955–1962 (2009). [CrossRef] [PubMed]
  20. J. H. Li, K. J. Webb, G. J. Burke, D. A. White, and C. A. Thompson, “Design of near-field irregular diffractive optical elements by use of a multiresolution direct binary search method,” Opt. Lett. 31(9), 1181–1183 (2006). [CrossRef] [PubMed]
  21. G. Zhou, X. Yuan, P. Dowd, Y. L. Lam, and Y. C. Chan, “Design of diffractive phase elements for beam shaping: hybrid approach,” J. Opt. Soc. Am. A 18(4), 791–800 (2001). [CrossRef]
  22. J. L. Kreuzer, “Coherent light optical system yielding an output beam of desired intensity distribution at a desired equiphase surface,” U.S. patent 3,476,463, 1969.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited