OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8286–8293

Linearly polarized second harmonic generation microscopy reveals chirality

V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8286-8293 (2010)
http://dx.doi.org/10.1364/OE.18.008286


View Full Text Article

Enhanced HTML    Acrobat PDF (664 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In optics, chirality is typically associated with circularly polarized light. Here we present a novel way to detect the handedness of chiral materials with linearly polarized light. We performed Second Harmonic Generation (SHG) microscopy on G-shaped planar chiral nanostructures made of gold. The SHG response originates in distinctive hotspots, whose arrangement is dependent of the handedness. These results uncover new directions for studying chirality in artificial materials.

© 2010 OSA

OCIS Codes
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Metamaterials

History
Original Manuscript: January 14, 2010
Revised Manuscript: February 5, 2010
Manuscript Accepted: February 13, 2010
Published: April 5, 2010

Citation
V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, "Linearly polarized second harmonic generation microscopy reveals chirality," Opt. Express 18, 8286-8293 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8286


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative Refraction,” Contemp. Phys. 45(3), 191–202 (2004). [CrossRef]
  4. V. G. Veselago, “The Electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  5. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004). [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534 (2005). [CrossRef] [PubMed]
  7. O. A. Aktsipetrov, I. M. Baranova, E. D. Mishina, and A. V. Petukhov, “Lightning rod effect in surface-enhanced second-harmonic generation,” JETP Lett. 40, 1012–1015 (1984).
  8. H. Rigneault, J. M. Lourtioz, C. Delalande, and A. Levenson, eds., Nanophotonics (ISTE, 2006).
  9. M. L. Brongersma, and P. G. Kirk, Surface Plasmon Nanophotonics, (Springer, Dordrecht, 2007).
  10. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004). [CrossRef] [PubMed]
  11. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009). [CrossRef]
  12. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009). [CrossRef] [PubMed]
  13. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006). [CrossRef] [PubMed]
  14. T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97(7), 1383–1388 (1993). [CrossRef]
  15. M. M.. Kauranen, T. Verbiest, A. Persoons, E. W. Meijer, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and E. E. Havinga, “Chiral effects in the second-order optical nonlinearity of a poly(isocyanide) monolayer,” Adv. Mater. 7(7), 641–644 (1995). [CrossRef]
  16. J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101(7), 6233 (1994). [CrossRef]
  17. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003). [CrossRef] [PubMed]
  18. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006). [CrossRef] [PubMed]
  19. W. Fan, S. Zhang, K. J. Malloy, S. R. J. Brueck, N.-C. Panoiu, and R. M. Osgood, “Second harmonic generation from patterned GaAs inside a subwavelength metallic hole array,” Opt. Express 14(21), 9570–9575 (2006). [CrossRef] [PubMed]
  20. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006). [CrossRef] [PubMed]
  21. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007). [CrossRef] [PubMed]
  22. T. Xu, X. Jiao, G. P. Zhang, and S. Blair, “Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement,” Opt. Express 15(21), 13894–13906 (2007). [CrossRef] [PubMed]
  23. B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express 14(2), 950–955 (2006). [CrossRef] [PubMed]
  24. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipolar analysis of second-harmonic radiation from gold nanoparticles,” Opt. Express 16(22), 17196–17208 (2008). [CrossRef] [PubMed]
  25. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007). [CrossRef] [PubMed]
  26. H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Chiral coupling in gold nanodimers,” Appl. Phys. Lett. 93(18), 183115 (2008). [CrossRef]
  27. V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9(11), 3945–3948 (2009). [CrossRef] [PubMed]
  28. T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Technique (CRC Press, 2009).
  29. E. Gielen, N. Smisdom, M. vandeVen, B. De Clercq, E. Gratton, M. Digman, J. M. Rigo, J. Hofkens, Y. Engelborghs, and M. Ameloot, “Measuring diffusion of lipid-like probes in artificial and natural membranes by raster image correlation spectroscopy (RICS): use of a commercial laser-scanning microscope with analog detection,” Langmuir 25(9), 5209–5218 (2009). [CrossRef] [PubMed]
  30. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric Transmission of Light and Enantiomerically Sensitive Plasmon Resonance in Planar Chiral Nanostructures,” Nano Lett. 7(7), 1996–1999 (2007). [CrossRef]
  31. Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79(23), 235109 (2009). [CrossRef]
  32. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25(6), 955 (2008). [CrossRef]
  33. W. L. Schaich, “Second harmonic generation by periodically-structured metal surfaces,” Phys. Rev. B 78(19), 195416 (2008). [CrossRef]
  34. T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103(18), 8296–8298 (1995). [CrossRef]
  35. J. J. Maki, T. Verbiest, M. Kauranen, S. Van Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105(2), 767–772 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited