OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8353–8359

Graphene in a photonic metamaterial

Nikitas Papasimakis, Zhiqiang Luo, Ze Xiang Shen, Francesco De Angelis, Enzo Di Fabrizio, Andrey E. Nikolaenko, and Nikolay I. Zheludev  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8353-8359 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a photonic metamaterial that shows extraordinary sensitivity to the presence of a single atomic layer of graphene on its surface. Metamaterial's optical transmission increases multi-fold at the resonance frequency linked to the Fano-type plasmonic mode supported by the periodic metallic nanostructure. The experiments were performed with chemical vapor deposited (CVD) graphene covering a number of size-scaled metamaterial samples with plasmonic modes at different frequencies ranging from 167 to 187 Thz.

© 2010 OSA

OCIS Codes
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: February 1, 2010
Revised Manuscript: March 23, 2010
Manuscript Accepted: March 23, 2010
Published: April 6, 2010

Nikitas Papasimakis, Zhiqiang Luo, Ze Xiang Shen, Francesco De Angelis, Enzo Di Fabrizio, Andrey E. Nikolaenko, and Nikolay I. Zheludev, "Graphene in a photonic metamaterial," Opt. Express 18, 8353-8359 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef] [PubMed]
  2. A. H. Castro Neto, F. Guinea, and N. M. R. Peres, “Drawing conclusions from graphene,” Physics World 19, 33–37 (2006).
  3. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat. Phys. 2(3), 177–180 (2006). [CrossRef]
  4. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005). [CrossRef] [PubMed]
  5. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nat. Nanotechnol. 3(8), 491–495 (2008). [CrossRef] [PubMed]
  6. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007). [CrossRef] [PubMed]
  7. M. Freitag, “Graphene: nanoelectronics goes flat out,” Nat. Nanotechnol. 3(8), 455–457 (2008). [CrossRef] [PubMed]
  8. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009). [CrossRef]
  9. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007). [CrossRef] [PubMed]
  10. D. S. L. Abergel, A. Russell, and V. I.. Falko, “Visibility of graphene falkes on a dielectric substrate,” Appl. Phys. Lett. 91(6), 063125 (2007). [CrossRef]
  11. G. Teo, H. Wang, Y. Wu, Z. Guo, J. Zhang, Z. Ni, and Z. Shen, “Visibility study of graphene multilayer structures,” J. Appl. Phys. 103(12), 124302 (2008). [CrossRef]
  12. P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007). [CrossRef]
  13. X. Wang, M. Zhao, and D. D. Nolte, “Optical contrast and clarity of graphene on an arbitrary substrate,” Appl. Phys. Lett. 95(8), 081102 (2009). [CrossRef]
  14. K. Chang, J. T. Liu, J. B. Xia, and N. Dai, “Enhanced visibility of graphene: Effect of one-dimensional photonic crystal,” Appl. Phys. Lett. 91(18), 181906 (2007). [CrossRef]
  15. A. Banerjee and H. Grebel, “Depositing graphene films on solid and perforated substrates,” Nanotechnology 19(36), 365303 (2008). [CrossRef] [PubMed]
  16. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007). [CrossRef] [PubMed]
  17. A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, “Generalized surface Plasmon resonance sensors using metamaterials and negative index materials,” PIERS 51, 139–152 (2005). [CrossRef]
  18. I. A. I. Al-Naib, C. Jensen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93(8), 083507 (2008). [CrossRef]
  19. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91(6), 062511 (2007). [CrossRef]
  20. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007). [CrossRef]
  21. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009). [CrossRef] [PubMed]
  22. H. J. Lee and J. G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92(25), 254103 (2008). [CrossRef]
  23. E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009). [CrossRef]
  24. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. D. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009). [CrossRef] [PubMed]
  25. V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “Trapping of light by metal arrays,” submitted for publication.
  26. N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorderr transitions,” Phys. Rev. B 80(4), 041102 (2009). [CrossRef]
  27. V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of meta-molecules,” http://arxiv.org/abs/0908.2533 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 3 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited