OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8412–8421

Monolithic integration and synchronous operation of germanium photodetectors and silicon variable optical attenuators

Sungbong Park, Tai Tsuchizawa, Toshifumi Watanabe, Hiroyuki Shinojima, Hidetaka Nishi, Koji Yamada, Yasuhiko Ishikawa, Kazumi Wada, and Seiichi Itabashi  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8412-8421 (2010)
http://dx.doi.org/10.1364/OE.18.008412


View Full Text Article

Enhanced HTML    Acrobat PDF (15365 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the monolithic integration of germanium (Ge) p-i-n photodetector (PDs) with silicon (Si) variable optical attenuator (VOAs) based on submicrometer Si rib waveguide. A PD is connected to a VOA along the waveguide via a tap coupler. The PDs exhibit low dark current of ~60 nA and large responsivity of ~0.8 A/W at the reverse bias of 1 V at room temperature. These characteristics are uniform over the chip scale. The PDs generate photocurrents precisely with respect to DC optical power attenuated by the VOAs. Two devices work synchronously for modulated optical signals as well. 3-dB cut-off frequency of the VOA is ~100 MHz, while that of the PD is ~1 GHz. The synchronous response speed is limited by the VOA response speed. This is the first demonstration, to the best of our knowledge, of monolithic integration of Ge PDs with high-carrier-injection-based optical modulation devices based on Si.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5160) Optical devices : Photodetectors
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: February 19, 2010
Revised Manuscript: March 30, 2010
Manuscript Accepted: March 31, 2010
Published: April 6, 2010

Citation
Sungbong Park, Tai Tsuchizawa, Toshifumi Watanabe, Hiroyuki Shinojima, Hidetaka Nishi, Koji Yamada, Yasuhiko Ishikawa, Kazumi Wada, and Seiichi Itabashi, "Monolithic integration and synchronous operation of germanium photodetectors and silicon variable optical attenuators," Opt. Express 18, 8412-8421 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8412


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. de Albuquerque, A. J. N. Houghton, and S. Malmros, “Field trials for fiber access in the EC,” IEEE Commun. Mag. 32(2), 40–48 (1994). [CrossRef]
  2. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited],” J. Opt. Netw. 4(11), 737 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=JON-4-11-737 . [CrossRef]
  3. C. Lin, Broadband Optical Access Networks and Fiber-to-the-Home: Systems Technologies and Deployment Strategies (Wiley, 2006), Chap 12.
  4. M. Fujiwara, J. Kani, H. Suzuki, and K. Iwatsuki, “Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol. 24(2), 740–746 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-24-2-740 . [CrossRef]
  5. J. Moon, K. Choi, S. Mun, and C. Lee, “Effects of back-reflection in WDM-PONs based on seed light injection,” IEEE Photon. Technol. Lett. 19(24), 2045–2047 (2007). [CrossRef]
  6. Y. Liu, C. W. Chow, C. H. Kwok, H. K. Tsang, and C. Lin, “Optical burst and transient equalizer for 10Gb/s amplified WDM-PON,” in Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, (Academic, Anaheim, USA, 2007), OThU7.
  7. H. Dai, J. Pan, and C. Lin, “All-optical gain control of in-line erbium-doped fiber amplifiers for hybrid analog/digital WDM systems,” IEEE Photon. Technol. Lett. 9(6), 737–739 (1997). [CrossRef]
  8. L. Pavesi, and D. J. Lockwood, eds., Silicon photonics (Springer, 2004).
  9. D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16(21), 16754–16765 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16754 . [CrossRef] [PubMed]
  10. K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Application of low-loss silicon photonic wire waveguides with carrier injection structures,” in Proceedings of 4th International Conference on Group IV Photonics, (Institute of Electrical and Electronics Engineers, Tokyo, Japan, 2007), pp. 116–118.
  11. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  12. C. K. Tang, G. T. Reed, A. J. Walton, and A. G. Rickman, “Low-loss, single-model optical phase modulator in SIMOX material,” J. Lightwave Technol. 12(8), 1394–1400 (1994). [CrossRef]
  13. Y. Liu, C. W. Cho, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 18(17), 1882–1884 (2006). [CrossRef]
  14. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007). [CrossRef]
  15. D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-3916 . [CrossRef] [PubMed]
  16. L. Vivien, M. Rouvière, J.-M. Fédéli, D. Marris-Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, and S. Laval, “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15(15), 9843–9848 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9843 . [CrossRef] [PubMed]
  17. J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D. D. Cannon, S. Jongthammanurak, D. T. Danielson, L. C. Kimerling, J. Chen, F. Ö. Ilday, F. X. Kärtner, and J. Yasaitis, “High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform,” Appl. Phys. Lett. 87(10), 103501 (2005). [CrossRef]
  18. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005). [CrossRef]
  19. S. Park, Y. Ishikawa, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, and K. Wada, ““Effect of post-growth annealing on morphology of Ge mesa selectively grown on Si,” IEICE Trans. Electron,” E 91-C, 181 (2008).
  20. K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, ““Microphotonics devices Based on silicon wire waveguiding system,” IEICE Trans. Electron,” E 87-C, 351 (2004).
  21. S. J. Koester, L. Schares, C. L. Schow, G. Dehlinger, and R. A. John, “Temperature-dependent analysis of Ge-on-SOI photodetectors and receivers,” in Proceedings of 3th International Conference on Group IV Photonics, (Institute of Electrical and Electronics Engineers, Ottawa, Canada, 2006), pp. 179–181.
  22. Z. Huang, J. Oh, S. K. Banerjee, and J. C. Campbell, “Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,” IEEE J. Quantum Electron. 43(3), 238–242 (2007). [CrossRef]
  23. H. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909 (1999). [CrossRef]
  24. S. Park, Y. Ishikawa, K. Wada, Y. Tsusaka, and J. Matsui, “Strain and absorption coefficient of finite Ge structures on Si,” Jpn. J. Appl. Phys. 48(6), 064501 (2009). [CrossRef]
  25. S. Nishihara, M. Nakamura, K. Nishimura, K. Kishine, S. Kimura, and K. Kato, “10.3 Gbit/s burst-mode PIN-TIA module with high sensitivity, wide dynamic range and quick response,” Electron. Lett. 44(3), 222 (2008). [CrossRef]
  26. H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, K. Yamada, and S. Itabashi, “Compact and polarization-independent variable optical attenuator based on a silicon wire waveguide with a carrier injection Structure,” Jpn. J. Appl. Phys. (to be published).
  27. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-8-1198 . [CrossRef] [PubMed]
  28. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008). [CrossRef]
  29. L. Chen, P. Dong, and M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express 16(15), 11513–11518 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11513 . [CrossRef] [PubMed]
  30. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-17-15248 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited