OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8422–8429

Mesoscopic Epifluorescence Tomography: Reconstruction of superficial and deep fluorescence in highly-scattering media

Saskia Björn, Vasilis Ntziachristos, and Ralf Schulz  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8422-8429 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2145 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mesoscopic Epifluorescence Tomography (MEFT) is a technique derived from Laminar Optical Tomography (LOT), determining fluorescence biodistribution by tomographic means in reflectance geometry. A pencil beam is scanned over the region of interest to excite fluorophores hidden within the tissue, while a CCD camera acquires images of reflected fluorescence emissions. This configuration is advantageous whenever transillumination of the specimen is not feasible, e.g., in the presence of skin chambers or when using wavelengths in the visible range where absorption is high. We present simulation and phantom studies recovering deep GFP-like fluorescence in highly scattering and strongly absorbing media with a penetration depth up to 10mm.

© 2010 OSA

OCIS Codes
(100.6950) Image processing : Tomographic image processing
(260.2510) Physical optics : Fluorescence
(290.7050) Scattering : Turbid media

ToC Category:
Image Processing

Original Manuscript: December 9, 2009
Revised Manuscript: February 26, 2010
Manuscript Accepted: March 10, 2010
Published: April 7, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Saskia Björn, Vasilis Ntziachristos, and Ralf Schulz, "Mesoscopic Epifluorescence Tomography: Reconstruction of superficial and deep fluorescence in highly-scattering media," Opt. Express 18, 8422-8429 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005). [CrossRef] [PubMed]
  2. D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009). [CrossRef]
  3. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007). [CrossRef] [PubMed]
  4. A. Da Silva, M. Leabad, C. Driol, T. Bordy, M. Debourdeau, J. M. Dinten, P. Peltié, and P. Rizo, “Optical calibration protocol for an x-ray and optical multimodality tomography system dedicated to small-animal examination,” Appl. Opt. 48(10), D151–D162 (2009). [CrossRef] [PubMed]
  5. D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009). [CrossRef] [PubMed]
  6. A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008). [CrossRef] [PubMed]
  7. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002). [CrossRef] [PubMed]
  8. C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2008). [CrossRef]
  9. E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004). [CrossRef] [PubMed]
  10. S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009). [CrossRef] [PubMed]
  11. B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706–1 (2009). [CrossRef] [PubMed]
  12. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003). [CrossRef] [PubMed]
  13. A. Garofalakis, G. Zacharakis, H. Meyer, E. N. Economou, C. Mamalaki, J. Papamatheakis, D. Kioussis, V. Ntziachristos, and J. Ripoll, “Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography,” Mol. Imaging 6(2), 96–107 (2007). [PubMed]
  14. R. M. Hoffman, “Recent advances on in vivo Imaging with fluorescent proteins,” Fluorescent Proteins, Second Edition 85, 485–495 (2008).
  15. A. Dunn and D. Boas, “Transport-based image reconstruction in turbid media with small source-detector separations,” Opt. Lett. 25(24), 1777–1779 (2000). [CrossRef]
  16. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008). [CrossRef] [PubMed]
  17. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995). [CrossRef] [PubMed]
  18. C. C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Softw. 8(1), 43–71 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited