OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8505–8514

Surface plasmon waveguide Schottky detector

Ali Akbari, R. Niall Tait, and Pierre Berini  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8505-8514 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1198 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A surface plasmon polariton detector is demonstrated at infra-red wavelengths. The device consists of a metal stripe on silicon forming a Schottky contact thereon and supporting surface a plasmon polariton mode that is strongly confined and localised to the metal–semiconductor interface. Detection of optical radiation below the bandgap of silicon (at infrared wavelengths) occurs through internal photoemission. Responsivities of 0.38 and 1.04 mA/W were measured via end-fire coupling to a tapered optical fibre, at room temperature and at a wavelength of 1280 nm, for gold and aluminium stripes on n-type silicon, respectively. The device can be integrated with other structures used in nano-plasmonics, nano-photonics or silicon-based photonics, and it holds promise for short-reach optical interconnects and power monitoring applications.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.0040) Optoelectronics : Detectors

ToC Category:
Optics at Surfaces

Original Manuscript: January 22, 2010
Revised Manuscript: March 5, 2010
Manuscript Accepted: March 8, 2010
Published: April 7, 2010

Ali Akbari, R. Niall Tait, and Pierre Berini, "Surface plasmon waveguide Schottky detector," Opt. Express 18, 8505-8514 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, USA, 2007).
  3. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008). [CrossRef]
  4. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]
  5. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001). [CrossRef]
  6. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001). [CrossRef]
  7. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001). [CrossRef]
  8. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003). [CrossRef]
  9. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005). [CrossRef]
  10. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008). [CrossRef] [PubMed]
  11. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-ranging surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006). [CrossRef]
  12. B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91(8), 081111 (2007). [CrossRef]
  13. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008). [CrossRef] [PubMed]
  14. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61(5), 44–50 (2008). [CrossRef]
  15. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuactor. B 54(1-2), 3–15 (1999). [CrossRef]
  16. P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009). [CrossRef]
  17. S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, USA, 2006).
  18. M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization,” Appl. Phys. Lett. 92(25), 251104 (2008). [CrossRef]
  19. H. Elabd and W. F. Kosonocky, “Theory and measurements of photoresponse for thin film Pd2Si and PtSi infrared Schottky-barrier detectors with optical cavity,” RCA Review 43, 569–589 (1982).
  20. S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985). [CrossRef]
  21. K. M. Torosian, A. S. Karakashian, and Y. Y. Teng, “Surface plasma-enhanced internal photoemission in gallium arsenide Schottky diodes,” Appl. Opt. 26(13), 2650–2652 (1987). [CrossRef] [PubMed]
  22. C. Daboo, M. J. Baird, H. P. Hughes, N. Apsley, and M. T. Emeny, “Improved surface plasmon enhanced photodetection at an Au-GaAs Schottky junction using a novel molecular beam epitaxy grown Otto coupling structure,” Thin Solid Films 201(1), 9–27 (1991). [CrossRef]
  23. S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92(8), 081103 (2008). [CrossRef]
  24. C. Scales, I. Breukelaar, and P. Berini, “Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon,” Opt. Lett. 35(4), 529–531 (2010). [CrossRef] [PubMed]
  25. A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Appl. Phys. Lett. 95(2), 021104 (2009). [CrossRef]
  26. Oz Optics, Tapered PM Optical Fiber (TPMJ-X-1550–8/125–0.4–10–2.5–14–1) ( www.ozoptics.com )
  27. A. B. Buckman, Guided-Wave Photonics (Harcourt Brace Jovanovich, New York, USA, 1992).
  28. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, USA, 1985).
  29. P. Kramer and L. J. van Ruyven, “Position of the band edges of silicon under uniaxial stress,” Appl. Phys. Lett. 20(11), 420–422 (1972). [CrossRef]
  30. P. Berini, N. Lahoud, and R. Charbonneau, “Fabrication of surface plasmon waveguides and integrated components on ultrathin freestanding membranes,” J. Vac. Sci. Technol. A 26(6), 1383–1391 (2008). [CrossRef]
  31. V. Aubry and F. Meyer, “Schottky diodes with high series resistance: Limitations of forward I-V methods,” J. Appl. Phys. 76(12), 7973–7984 (1994). [CrossRef]
  32. C.-D. Lien, F. C. T. So, and M.-A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high series resistance,” IEEE Trans. Electron. Dev. 31(10), 1502–1503 (1984). [CrossRef]
  33. J. H. Werner, “Schottky barrier and pn-junctionI/V plots - Small signal evaluation,” Appl. Phys., A Mater. Sci. Process. 47(3), 291–300 (1988). [CrossRef]
  34. J. M. Mooney, “The dependence of the Schottky emission coefficient on reverse bias,” J. Appl. Phys. 65(7), 2869–2871 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited