OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8556–8573

Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems

J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8556-8573 (2010)
http://dx.doi.org/10.1364/OE.18.008556


View Full Text Article

Enhanced HTML    Acrobat PDF (1408 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Detailed investigations of the transmission performance of adaptively modulated optical orthogonal frequency division multiplexed (AMOOFDM) signals converted using reflective semiconductor optical amplifiers (RSOAs) are undertaken over intensity-modulation and direct-detection (IMDD) single-mode fiber (SMF) transmission systems for WDM-PONs. The theoretical RSOA model adopted for modulating the AMOOFDM signals is experimentally verified rigorously in the aforementioned transmission systems incorporating recently developed real-time end-to-end OOFDM transceivers. Extensive performance comparisons are also made between RSOA and SOA intensity modulators. Optimum RSOA operating conditions are identified, which are independent of RSOA rear-facet reflectivity and very similar to those corresponding to SOAs. Under the identified optimum operating conditions, the RSOA and SOA intensity modulators support the identical AMOOFDM transmission performance of 30Gb/s over 60km SMFs. Under low-cost optical component-enabled practical operating conditions, RSOA intensity modulators with rear-facet reflectivity values of >0.3 outperform considerably SOA intensity modulators in transmission performance, which decreases significantly with reducing RSOA rear-facet reflectivity and optical input power. In addition, results also show that use can be made of the RSOA/SOA intensity modulation-induced negative frequency chirp to improve the AMOOFDM transmission performance in IMDD SMF systems.

© 2010 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4080) Fiber optics and optical communications : Modulation
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 23, 2010
Manuscript Accepted: April 2, 2010
Published: April 8, 2010

Citation
J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang, "Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems," Opt. Express 18, 8556-8573 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8556


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Grobe and J.-P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008). [CrossRef]
  2. P. W. Shumate, “Fibre-to-the-Home: 1977-2007,” J. Lightwave Technol. 26(9), 1093–1103 (2008). [CrossRef]
  3. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access networks,” in Optical Fiber Communication. Conf., (San Diego, CA, USA, 2009), Paper OMV1.
  4. K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008). [CrossRef]
  5. M. Omella, V. Polo, J. Lazaro, B. Schrenk, and J. Prat, “10 Gb/s RSOA transmission by direct duobinary modulation,” in European Conference on Optical Communication (ECOC), (Brussels, Belgium, 2008), PD Paper Tu.3.E.4.
  6. C. H. Yeh, C. W. Chow, C. H. Wang, F. Y. Shih, H. C. Chien, and S. Chi, “A self-protected colorless WDM-PON with 2.5 Gb/s upstream signal based on RSOA,” Opt. Express 16(16), 12296–12301 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-16-12296 . [CrossRef] [PubMed]
  7. W. Lee, M. H. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005). [CrossRef]
  8. M. Omella, I. Papagiannakis, B. Schrenk, D. Klonidis, J. A. Lázaro, A. N. Birbas, J. Kikidis, J. Prat, and I. Tomkos, “10 Gb/s full-duplex bidirectional transmission with RSOA-based ONU using detuned optical filtering and decision feedback equalization,” Opt. Express 17(7), 5008–5013 (2009). [CrossRef] [PubMed]
  9. G. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009). [CrossRef]
  10. X. Q. Jin, R. P. Giddings, and J. M. Tang, “Real-time transmission of 3 Gb/s 16-QAM encoded optical OFDM signals over 75 km SMFs with negative power penalties,” Opt. Express 17(17), 14574–14585 (2009). [CrossRef] [PubMed]
  11. R. P. Giddings, X. Q. Jin, and J. M. Tang, “Experimental demonstration of real-time 3Gb/s optical OFDM transceivers,” Opt. Express 17(19), 16654–16665 (2009). [CrossRef] [PubMed]
  12. X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers,” Opt. Express 17(22), 20484–20493 (2009). [CrossRef] [PubMed]
  13. R. P. Giddings, X. Q. Jin, and J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009). [CrossRef] [PubMed]
  14. J. M. Tang and K. A. Shore, “30Gb/s signal transmission over 40-km directly modulated DFB-based single mode fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006). [CrossRef]
  15. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s for upstream transmission by remote modulation of 1 GHz RSOA using Adaptively Modulated Optical OFDM for WDM-PON single fiber architecture,” in European Conference on Optical Communication (ECOC), (Brussels, Belgium, 2008), PD paper Th.3.F.1.
  16. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Colourless Real-Time Optical OFDM End-to-End Transmission at 7.5Gb/s over 25km SSMF Using 1GHz RSOAs for WDM-PONs,” in Optical Fiber Communication. Conf., (San Diego, CA, USA, 2010), Paper OMS4.
  17. L. Q. Guo and M. J. Connelly, “A novel approach to all-optical wavelength conversion by utilizing a reflective semiconductor optical amplifier in a co-propagation scheme,” Opt. Commun. 281(17), 4470–4473 (2008). [CrossRef]
  18. C. Arellano, and J. Prat, “Semiconductor optical amplifiers in access networks,” presented at the International Conference on Transparent Optical Network (ICTON), (Barcelona, Catalonia, Spain, 2005), Paper We.A1.4.
  19. J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009). [CrossRef]
  20. J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express 17(11), 9012–9027 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-11-9012 . [CrossRef] [PubMed]
  21. J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol. 27(13), 2412–2419 (2009). [CrossRef]
  22. J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007). [CrossRef]
  23. M. J. Adams, J. V. Collins, and I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEE Proceedings Pt. J. 132, 58–63 (1985).
  24. J. M. Tang and K. A. Shore, “Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency,” IEEE J. Quantum Electron. 34(7), 1263–1269 (1998). [CrossRef]
  25. G. P. Agrawal, Fibre-Optic Communication Systems, (NJ: Wiley, 1997).
  26. R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 1476–1484 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited