OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8574–8586

Study on scattering coefficient of Surface Plasmon Polariton waves at interface of two metal-dielectric waveguides by using G-GFSIEM method

Nafiseh Zavareian and Reza Massudi  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8574-8586 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1290 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Generalized Green’s Function Surface Integral Equation Method (G-GFSIEM) is used to study propagation of surface plasmon polariton waves at interface of two semi-infinite metal-dielectric waveguides. Reflection, transmission, and scattering coefficients for structures with different dielectric constants are calculated by using this method and by using energy conservation law. Conditions where scattering coefficient is maximized or minimized are studied. It is found that by using appropriate materials with specified dielectric constants, structures with required reflection, transmission, and scattering coefficients can be designed.

© 2010 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: February 17, 2010
Revised Manuscript: March 17, 2010
Manuscript Accepted: March 31, 2010
Published: April 8, 2010

Nafiseh Zavareian and Reza Massudi, "Study on scattering coefficient of Surface Plasmon Polariton waves at interface of two metal-dielectric waveguides by using G-GFSIEM method," Opt. Express 18, 8574-8586 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface plasmons on smooth and rough surfaces and on grating (Springer-Verlag, Berlin, 1988).
  2. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip- scale technology,” Mater. Today 9(7-8), 20–27 (2006). [CrossRef]
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface- plasmon circuitry,” Phys. Today 61(5), 44–50 (2008). [CrossRef]
  4. S. I. Bozhevolnyi, ed., Plasmonic Nanoguides and Circuits (Pan Stanford, Singapore, 2009).
  5. R. F. Oulton, D. F. Pile, Y. Liu, and X. Zhang, “Scattering of surface plasmon polaritons at abrupt surface interfaces: Implication for nanoscale cavities,” Phys. Rev. B 76(3), 035408 (2007). [CrossRef]
  6. G. I. Stegeman, A. A. Maradudin, and T. S. Rahman, “Refraction of a surface polariton by an interface,” Phys. Rev. B 23(6), 2576–2585 (1981). [CrossRef]
  7. M. Zhong-Tuan, W. Pei, C. Yong, T. Hong-Gao, and M. Hai, “Pure reflection and refraction of a surface polariton by a matched waveguide structure,” Chin. Phys. Lett. 23(9), 2545–2548 (2006). [CrossRef]
  8. J. Elser and V. A. Podolskiy, “Scattering-free plasmonic optics with anisotropic metamaterials,” Phys. Rev. Lett. 100(6), 066402 (2008). [CrossRef] [PubMed]
  9. J. Jung and T. Søndergaard, “Green’s function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77(24), 245310 (2008). [CrossRef]
  10. T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral equation methods,” Phys. Status Solidi 244(10), 3448–3462 (2007) (b). [CrossRef]
  11. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009). [CrossRef]
  12. J. D. Jackson, Classical electrodynamics, (John Wiley & Sons, New York, 1999), p. 479.
  13. F. Paris, and J. Canas, Boundary element method-fundamentals and applications (Oxford University Press, 1997).
  14. E. D. Palik, ed., The Handbook of optical constants of solids (Academic Press, New York, NY 1997)
  15. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited