OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8587–8594

Decoy-state quantum key distribution with polarized photons over 200 km

Yang Liu, Teng-Yun Chen, Jian Wang, Wen-Qi Cai, Xu Wan, Luo-Kan Chen, Jin-Hong Wang, Shu-Bin Liu, Hao Liang, Lin Yang, Cheng-Zhi Peng, Kai Chen, Zeng-Bing Chen, and Jian-Wei Pan  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8587-8594 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (694 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an implementation of decoy-state quantum key distribution (QKD) over 200 km optical fiber cable through photon polarization encoding. This is achieved by constructing the whole QKD system operating at 320 MHz repetition rate, and developing high-speed transmitter and receiver modules. A novel and economic way of synchronization method is designed and incorporated into the system, which allows to work at a low frequency of 40kHz and removes the use of highly precise clock. A final key rate of 15 Hz is distributed within the experimental time of 3089 seconds, by using super-conducting single photon detectors. This is longest decoy-state QKD yet demonstrated up to date. It helps to make a significant step towards practical secure communication in long-distance scope.

© 2010 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(270.0270) Quantum optics : Quantum optics
(060.5565) Fiber optics and optical communications : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: January 6, 2010
Revised Manuscript: March 22, 2010
Manuscript Accepted: March 29, 2010
Published: April 8, 2010

Yang Liu, Teng-Yun Chen, Jian Wang, Wen-Qi Cai, Xu Wan, Luo-Kan Chen, Jin-Hong Wang, Shu-Bin Liu, Hao Liang, Lin Yang, Cheng-Zhi Peng, Kai Chen, Zeng-Bing Chen, and Jian-Wei Pan, "Decoy-state quantum key distribution with polarized photons over 200 km," Opt. Express 18, 8587-8594 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, (Bangalore, India, 1984), pp. 175-179.
  2. B. Huttner, N. Imoto, N. Gisin, and T. Mor, "Quantum cryptography with coherent states," Phys. Rev. A 51, 1863-1869 (1995). [CrossRef] [PubMed]
  3. H. P. Yuen, "Quantum amplifiers, quantum duplicators and quantum cryptography," Quantum Semiclass. Opt. 8, 939-949 (1996). [CrossRef]
  4. H. Inamori, N. Lütkenhaus, D. Mayers, "Unconditional security of practical quantum key distribution," Eur. Phys. J. D 41, 599-627 (2007). [CrossRef]
  5. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  6. G. Brassard, N. Lütkenhaus, T. Mor, and B.C. Sanders, "Limitations on Practical Quantum Cryptography," Phys. Rev. Lett. 85, 1330-1333 (2000). [CrossRef] [PubMed]
  7. N. Lütkenhaus, "Security against individual attacks for realistic quantum key distribution," Phys. Rev. A 61, 052304 (2000). [CrossRef]
  8. N. Lütkenhaus and M. Jahma, "Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack," New J. Phys. 4, 44-53 (2002). [CrossRef]
  9. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 4, 325-360 (2004).
  10. M. Dušek, N. Lütkenhaus, and M. Hendrych, "Quantum Cryptography," in Progress in Optics VVVX, edited by E. Wolf (Elsevier, 2006).
  11. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007). [CrossRef]
  12. V. Scarani and R. Renner, "Quantum Cryptography with Finite Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing," Phys. Rev. Lett. 100, 200501 (2008) and also in 3rd Workshop on Theory of Quantum Computation, Communication, and Cryptography (TQC 2008), JAN 30-FEB 01, 2008 Univ. Tokyo, Tokyo, Japan. [CrossRef] [PubMed]
  13. Raymond Y. Q. Cai and V. Scarani, "Finite-key analysis for practical implementations of quantum key distribution," New J. Phys. 11, 045024 (2009). [CrossRef]
  14. V. Scarani, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301-1350 (2009).
  15. H.-K. Lo and Y. Zhao, eprint arXiv:0803.2507 (2008).
  16. M. Dušek, O. Haderka, and M. Hendrych, "Generalized beam-splitting attack in quantum cryptography with dim coherent states," Opt. Commun. 169, 103-108 (1999). [CrossRef]
  17. W.-Y. Hwang, "Quantum key distribution with high loss: toward global secure communication," Phys. Rev. Lett. 91, 057901 (2003). [CrossRef] [PubMed]
  18. H.-K. Lo, Proceedings of IEEE ISIT [International Symposium on Information Theory) 2004, pp.137-137 (IEEE Press. 2004)].
  19. H.-K. Lo, X. Ma, and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005). [CrossRef] [PubMed]
  20. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012326 (2005). [CrossRef]
  21. X.-B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography," Phys. Rev. Lett. 94, 230503 (2005). [CrossRef] [PubMed]
  22. X.-B. Wang, "Decoy-state protocol for quantum cryptography with four different intensities of coherent light," Phys. Rev. A 72, 012322 (2005). [CrossRef]
  23. J. W. Harrington, J. M Ettinger, R. J. Hughes, and J. E. Nordholt, "Enhancing practical security of quantum key distribution with a few decoy states," eprint arXiv: quant-ph/0503002 (2005).
  24. X.-B. Wang, "Decoy-state quantum key distribution with large random errors of light intensity," Phys. Rev. A 75, 052301 (2007). [CrossRef]
  25. X.-B. Wang, C.-Z. Peng, and J.-W. Pan, "Simple protocol for secure decoy-state quantum key distribution with a loosely controlled source," Appl. Phys. Lett. 90, 031110 (2007). [CrossRef]
  26. M. Hayashi, "General theory for decoy-state quantum key distribution with an arbitrary number of intensities," New J. Phys. 9, 284 (2007). [CrossRef]
  27. X.-B. Wang, C.-Z. Peng, J. Zhang, L. Yang, and J.-W. Pan, "General theory of decoy-state quantum cryptography with source errors," Phys. Rev. A 77, 042311 (2008). [CrossRef]
  28. X.-B. Wang, L. Yang, C.-Z. Peng, and J.-W. Pan, "Decoy-state quantum key distribution with both source errors and statistical fluctuations," New. J. Phys. 11, 075006 (2009). [CrossRef]
  29. Y. Zhao, B. Qi, and H.-K. Lo, "Quantum key distribution with an unknown and untrusted source," Phys. Rev. A 77, 052327 (2008). [CrossRef]
  30. Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, "Experimental Quantum Key Distribution with Decoy States," Phys. Rev. Lett. 96, 070502 (2006). [CrossRef] [PubMed]
  31. C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, "Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding," Phys. Rev. Lett. 98, 010505 (2007). [CrossRef] [PubMed]
  32. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber," Phys. Rev. Lett. 98, 010503 (2007). [CrossRef] [PubMed]
  33. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, "Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km," Phys. Rev. Lett. 98, 010504 (2007). [CrossRef] [PubMed]
  34. Z.-L. Yuan, A. W. Sharpe, and A. J. Shields, "Unconditionally secure one-way quantum key distribution using decoy pulses," Appl. Phys. Lett. 90, 011118 (2007). [CrossRef]
  35. A. Tanaka, M. Fujiwara, S.W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, "Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization," Opt. Express 16, 11354-11360 (2008). [CrossRef] [PubMed]
  36. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A.W. Sharpe, and A. J. Shields, "Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate," Opt. Express 16, 18790 (2008). [CrossRef]
  37. Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z.-F. Han, G.-C. Guo, and A. Karlsson "Experimental Decoy-State Quantum Key Distribution with a Sub-Poissionian Heralded Single-Photon Source," Phys. Rev. Lett. 100, 090501 (2008). [CrossRef] [PubMed]
  38. D. Rosenberg, C. G. Peterson, J. W. Harrington, P. R. Rice, N. Dallmann, K. T. Tyagi, K. P. McCabe, S. Nam, B. Baek, R. H. Hadfield, R. J. Hughes, and J. E. Nordholt, "Practical long-distance quantum key distribution system using decoy levels," New J. Phys. 11, 045009 (2009). [CrossRef]
  39. T.-Y. Chen, H. Liang, Y. Liu, W.-Q. Cai, L. Ju, W.-Y. Liu, J. Wang, H. Yin, K. Chen, Z.-B. Chen, C.-Z. Peng, and J.-W. Pan, "Field test of a practical secure communication network with decoy-state quantum cryptography," Opt. Express 17, 6540-6549 (2009). [CrossRef] [PubMed]
  40. V. Makarov, A. Anisimov, and J. Skaar, "Effects of detector efficiency mismatch on security of quantum cryptosystems," Phys. Rev. A 74, 022313 (2006). [CrossRef]
  41. B. Qi, C. H. Fung, H. K. Lo, and X. Ma, "Time-shift attack in practical quantum cryptosystems," Quant. Info. Comput. 7, 073-082 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited