OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8621–8629

Phase-locking of the beat signal of two distributed-feedback diode lasers to oscillators working in the MHz to THz range

Fabian Friederich, Gunter Schuricht, Anselm Deninger, Frank Lison, Gunnar Spickermann, Peter Haring Bolívar, and Hartmut G. Roskos  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8621-8629 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1309 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present difference-frequency stabilization of free-running distributed-feedback (DFB) diode lasers, maintaining a stable phase-lock to a local oscillator (LO) signal. The technique has been applied to coherent hybrid THz imaging which employs a high-power electronic radiation source emitting at 0.62 THz and electro-optic detectors. The THz radiation of the narrow-band emitter is mixed with the difference frequency of the DFB diode laser pair. The resulting intermediate frequency is phase-locked to the LO signal from a radio-frequency generator using a fast laser-current control loop. The stabilization scheme can be adapted readily to a wide range of applications which require stabilized laser beat-notes.

© 2010 Optical Society of America

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(040.2235) Detectors : Far infrared or terahertz
(140.3425) Lasers and laser optics : Laser stabilization
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 13, 2010
Revised Manuscript: March 8, 2010
Manuscript Accepted: March 9, 2010
Published: April 9, 2010

Fabian Friederich, Gunter Schuricht, Anselm Deninger, Frank Lison, Gunnar Spickermann, Peter Haring Bolívar, and Hartmut G. Roskos, "Phase-locking of the beat signal of two distributed-feedback diode lasers to oscillators working in the MHz to THz range," Opt. Express 18, 8621-8629 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Kahn, “1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 1, 340-342 (1989). [CrossRef]
  2. L. G. Kazovsky and D. A. Atlas, “A 1320-nm experimental optical phase-locked-loop: Performance investigation and PSK homodyne experiments at 140 Mb/s and 2 Gb/s,” J. Lightwave Technol. 8, 1415-1425 (1990). [CrossRef]
  3. G. J. Simonis and K. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microwave Theory Tech. 38, 667-669 (1990). [CrossRef]
  4. A. C. Davidson, F. W. Wise, and R. C. Compton, “Low phase noise 33-40-GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett. 10, 13041306 (1998). [CrossRef]
  5. M. Hyodo, K. S. Abedin, and N. Onodera, “Generation of Millimeter-Wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electrooptic crystal,” Opt Commun. 171, 159-169 (1999). [CrossRef]
  6. M. Hyodo and M. Watanabe, “Optical generation of millimeter-wave signals up to 330 GHz by means of cascadingly phase locking three semiconductor lasers,” IEEE Photon. Technol. Lett. 15, 458-460 (2003). [CrossRef]
  7. A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Inst. 79, 044702 (2008). [CrossRef]
  8. A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.accepted for publication.
  9. G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz,” Optics Commun. 104, 339-344 (1994). [CrossRef]
  10. A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance phase locking of wide linewidth lasers by combined use of optical injection locking and optical phase-lock loop,” J. Lightwave Technol. 17, 328-342 (1999). [CrossRef]
  11. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523-3525 (1995). [CrossRef]
  12. S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2, 71-76 (2005). [CrossRef]
  13. C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Inst. 72, 3811-3815 (2001). [CrossRef]
  14. J. Hult, I. S. Burns, and C. F. Kaminski, “Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers,” Appl. Opt. 44, 3675-3685 (2005). [CrossRef] [PubMed]
  15. X. Pan, H. Olesen, and B. Tromborg, “Spectral Linewidth of DFB Lasers Including the Effects of Spatial Hole burning and Nonuniform Current Injection,” IEEE Photon. Technol. Lett. 2, 312-315 (1990). [CrossRef]
  16. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980). [CrossRef]
  17. T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007). [CrossRef]
  18. T. May, C. am Weg, A. Alcin, B. Hils, T. Löffler, and H. G. Roskos, “Towards an active real-time THz camera: First realization of a hybrid system,” SPIE Proc. 6549, 654907 (2007). [CrossRef]
  19. B. Hils, M. D. Thomson, T. Löffler, W. von Spiegel, C. am Weg, H. G. Roskos, P. de Maagt, D. Doyle, and R. D. Geckeler, “Terahertz profilometry at 600 GHz with 0.5 μm depth resolution,” Opt. Express 16, 11289-11293 (2008). [CrossRef] [PubMed]
  20. Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026-1028 (1996). [CrossRef]
  21. F. Z. Meng, M. D. Thomson, V. Blank, W. von Spiegel, T. Löffler, and H. G. Roskos, “Characterizing large-area electro-optic crystals toward two-dimensional real-time terahertz imaging,” Appl. Opt. 48, 5197-5204 (2009). [CrossRef] [PubMed]
  22. Radiometer Physics GmbH , http://www.radiometer-physics.de.
  23. T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210-2212 (2002). [CrossRef]
  24. J.-F. Cliche, B. Shiullue, M. Têtu, and M. Poulin, “A 100-GHz-tunable photonic millimeter wave synthesizer for the Atacama Large Millimeter Array radio telescope,” IEEE MTT-S Int. Microwave Symposium (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited