OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8647–8659

Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared

Bora Ung and Maksim Skorobogatiy  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8647-8659 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new type of microstructured fiber for mid-infrared light is introduced. The chalcogenide glass-based microporous fiber allows extensive dispersion engineering that enables design of flattened waveguide dispersion windows and multiple zero-dispersion points – either blue-shifted or red-shifted from the bulk material zero-dispersion point – including the spectral region of CO2 laser lines ∼10.6 μm. Supercontinuum simulations for a specific chalcogenide microporous fiber are performed that demonstrate the potential of the proposed microstructured fiber design to generate a broad continuum in the middle-infrared region using pulsed CO2 laser as a pump. In addition, an analytical description of the Raman response function of chalcogenide As2Se3 is provided, and a Raman time constant of 5.4 fs at the 1.54 μm pump is computed. What distinguishes the microporous fiber from the microwire, nanowire and other small solid-core designs is the prospect of extensive chromatic dispersion engineering combined with the low loss guidance created by the porosity, thus offering long interaction lengths in nonlinear media.

© 2010 OSA

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.4005) Fiber optics and optical communications : Microstructured fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 1, 2010
Manuscript Accepted: March 16, 2010
Published: April 9, 2010

Bora Ung and Maksim Skorobogatiy, "Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared," Opt. Express 18, 8647-8659 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008). [CrossRef] [PubMed]
  2. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007). [CrossRef]
  3. L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” presented at the Conf. Adv. Solid State Lasers (ASSL), Seattle, WA, 2005, Paper TuC5.
  4. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, and F. Kung, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
  5. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92(7), 071101 (2008). [CrossRef]
  6. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008). [CrossRef] [PubMed]
  7. S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008). [CrossRef] [PubMed]
  8. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009). [CrossRef] [PubMed]
  9. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–14063 (2009). [CrossRef] [PubMed]
  10. CorActive High-Tech Infrared Fibers, “Mid-Infrared Transmission Optical Fiber,” (CorActive High-Tech Inc., 2009). http://www.coractive.com/an/pdf/irtgeneral.pdf
  11. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002). [CrossRef] [PubMed]
  12. Amorphous Materials, “AMTIR-2: Arsenic Selenide Glass As–Se,” (Amorphous Materials Inc., 2009). http://www.amorphousmaterials.com/amtir2.htm
  13. A. W. Snyder, and J. D. Love, Optical Waveguide Theory,” Chapman Hall, New York, (1983).
  14. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009). [CrossRef] [PubMed]
  15. M. Moenster, G. Steinmeyer, R. Iliew, F. Lederer, and K. Petermann, “Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers,” Opt. Lett. 31(22), 3249–3251 (2006). [CrossRef] [PubMed]
  16. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12(13), 2880–2887 (2004). [CrossRef] [PubMed]
  17. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004). [CrossRef]
  18. Y.-H. Chen, S. Varma, I. Alexeev, and H. M. Milchberg, “Measurement of transient nonlinear refractive index in gases using xenon supercontinuum single-shot spectral interferometry,” Opt. Express 15(12), 7458–7467 (2007). [CrossRef] [PubMed]
  19. G. P. Agrawal, Nonlinear Fiber Optics, 4th Ed.,” Academic Press, New York, (2006).
  20. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002). [CrossRef] [PubMed]
  21. P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103(4), 043602 (2009). [CrossRef] [PubMed]
  22. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Raman response function and supercontinuum generation in chalcogenide fiber,” presented at the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2008, Paper CMDD2.
  23. A. K. Atieh, P. Myslinski, J. Chrostowski, and P. Galko, “Measuring the Raman Time Constant (TR) for Soliton Pulses in Standard Single-Mode Fiber,” J. Lightwave Technol. 17(2), 216–221 (1999). [CrossRef]
  24. R. H. Stolen, “Nonlinearity in fiber transmission,” Proc. IEEE 68(10), 1232–1236 (1980). [CrossRef]
  25. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  26. P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13(19), 7535–7540 (2005). [CrossRef] [PubMed]
  27. M. Pushkarsky, M. Weida, T. Day, D. Arnone, R. Pritchett, D. Caffey, and S. Crivello, “High-power tunable external cavity quantum cascade laser in the 5-11 micron regime,” Proc. SPIE 6871, 68711X (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited